F. Medjdoub, E. Okada, Bertrand Grimbert, D. Ducatteau, Riccardo Silvestri, M. Meneghini, E. Zanoni, G. Meneghesso
{"title":"High performance high reliability AlN/GaN DHFET","authors":"F. Medjdoub, E. Okada, Bertrand Grimbert, D. Ducatteau, Riccardo Silvestri, M. Meneghini, E. Zanoni, G. Meneghesso","doi":"10.1109/ESSDERC.2014.6948779","DOIUrl":null,"url":null,"abstract":"We report on AlN/GaN double heterostructures for high frequency applications. 600 hours preliminary reliability assessment has been performed on these emerging RF devices, showing promising millimeter-wave 100 nm gate length GaN-on-Si device stability for the first time. A 150 nm AlN/GaN double heterostructure has been developed and evaluated on SiC substrate. State-of-the-art CW power-added-efficiencies (PAE) at 10 and 18 GHz have been achieved on ultrathin barrier (6 nm) GaN devices while operating at a drain bias exceeding 30 V.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We report on AlN/GaN double heterostructures for high frequency applications. 600 hours preliminary reliability assessment has been performed on these emerging RF devices, showing promising millimeter-wave 100 nm gate length GaN-on-Si device stability for the first time. A 150 nm AlN/GaN double heterostructure has been developed and evaluated on SiC substrate. State-of-the-art CW power-added-efficiencies (PAE) at 10 and 18 GHz have been achieved on ultrathin barrier (6 nm) GaN devices while operating at a drain bias exceeding 30 V.