Mass Lesions Classification in Digital Mammography using Optimal Subset of BI-RADS and Gray Level Features

Saejoon Kim, Sejong Yoon
{"title":"Mass Lesions Classification in Digital Mammography using Optimal Subset of BI-RADS and Gray Level Features","authors":"Saejoon Kim, Sejong Yoon","doi":"10.1109/ITAB.2007.4407354","DOIUrl":null,"url":null,"abstract":"Computer-aided diagnosis of mass lesions in Digital Database for Screening Mammography (DDSM) is investigated using a recently developed SVM based on recursive feature elimination (SVM-RFE) as the classification technique. To evaluate the generalizability, computer-aided diagnosis using cross-institutional mammograms is also examined. The results in this paper indicate that using only a subset of the available set of features facilitates increased computer-aided diagnosis accuracy, and that computer-aided diagnosis accuracy using cross-institutional mammograms is generally lower than when using same-institutional mammograms.","PeriodicalId":129874,"journal":{"name":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.2007.4407354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Computer-aided diagnosis of mass lesions in Digital Database for Screening Mammography (DDSM) is investigated using a recently developed SVM based on recursive feature elimination (SVM-RFE) as the classification technique. To evaluate the generalizability, computer-aided diagnosis using cross-institutional mammograms is also examined. The results in this paper indicate that using only a subset of the available set of features facilitates increased computer-aided diagnosis accuracy, and that computer-aided diagnosis accuracy using cross-institutional mammograms is generally lower than when using same-institutional mammograms.
利用BI-RADS和灰度特征的最佳子集对数字乳房x线摄影中的肿块病变进行分类
采用基于递归特征消去的支持向量机(SVM- rfe)作为分类技术,研究了乳腺x线造影数字数据库(DDSM)中肿块病灶的计算机辅助诊断。为了评估通用性,计算机辅助诊断使用跨机构乳房x光检查也进行了检查。本文的结果表明,仅使用可用特征集的一个子集有助于提高计算机辅助诊断的准确性,并且使用跨机构乳房x光检查的计算机辅助诊断的准确性通常低于使用同一机构乳房x光检查时的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信