J. Lee, Christopher Salerno, Karen U. Girgis, Ulyses Aguirre, R. B. Lakeh
{"title":"Effect of Phase Change and Buoyancy-Driven Flows on an ROC-Based Thermal Energy Storage System","authors":"J. Lee, Christopher Salerno, Karen U. Girgis, Ulyses Aguirre, R. B. Lakeh","doi":"10.1115/es2021-63938","DOIUrl":null,"url":null,"abstract":"Inorganic salts (e.g., chloride salts) have gained attention in the energy field as a new thermal energy storage medium. Low cost, high melting temperature and high heat capacity of inorganic salts make them attractive in utility-scale thermal storage applications as higher energy storage temperatures lead to higher efficiency in power generation. There is a potential to use the dry byproduct of water desalination, i.e., Reverse Osmosis Concentrate (ROC) as a thermal storage medium. Using ROC as a thermal energy storage medium would prevent a harmful waste to be released to the environment while introducing a novel and low-cost alternative for thermal energy storage medium. In this study, heat transfer behavior of an ROC-based thermal energy storage system is studied using CFD. A computational model is developed, verified, and validated to simulate the phase change process and buoyancy-driven flow in a square ROC-based thermal energy storage element. The computational results provide a predictive model for charge and discharge cycles of an ROC-based thermal energy storage system.","PeriodicalId":256237,"journal":{"name":"ASME 2021 15th International Conference on Energy Sustainability","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 15th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2021-63938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic salts (e.g., chloride salts) have gained attention in the energy field as a new thermal energy storage medium. Low cost, high melting temperature and high heat capacity of inorganic salts make them attractive in utility-scale thermal storage applications as higher energy storage temperatures lead to higher efficiency in power generation. There is a potential to use the dry byproduct of water desalination, i.e., Reverse Osmosis Concentrate (ROC) as a thermal storage medium. Using ROC as a thermal energy storage medium would prevent a harmful waste to be released to the environment while introducing a novel and low-cost alternative for thermal energy storage medium. In this study, heat transfer behavior of an ROC-based thermal energy storage system is studied using CFD. A computational model is developed, verified, and validated to simulate the phase change process and buoyancy-driven flow in a square ROC-based thermal energy storage element. The computational results provide a predictive model for charge and discharge cycles of an ROC-based thermal energy storage system.