Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering

Milton Mendieta, Fanny Panchana, B. Andrade, B. Bayot, Carmen Vaca, B. Vintimilla, Dennis Romero
{"title":"Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering","authors":"Milton Mendieta, Fanny Panchana, B. Andrade, B. Bayot, Carmen Vaca, B. Vintimilla, Dennis Romero","doi":"10.1109/ETCM.2018.8580315","DOIUrl":null,"url":null,"abstract":"The identification of shrimp organs in biology using histological images is a complex task. Shrimp histological images pose a big challenge due to their texture and similarity between classes of organs. Feature engineering and convolutional neural networks (CNN), as used for image classification, are suitable methods to assist biologists when performing organ detection. This work evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bag-of-Words (PBOW) models for image classification using big data techniques and transfer learning for the same classification task by using a pre-trained CNN. A comparative analysis of these two different techniques is performed, highlighting the characteristics of both approaches on the problem of identification of shrimp organs.","PeriodicalId":334574,"journal":{"name":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2018.8580315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The identification of shrimp organs in biology using histological images is a complex task. Shrimp histological images pose a big challenge due to their texture and similarity between classes of organs. Feature engineering and convolutional neural networks (CNN), as used for image classification, are suitable methods to assist biologists when performing organ detection. This work evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bag-of-Words (PBOW) models for image classification using big data techniques and transfer learning for the same classification task by using a pre-trained CNN. A comparative analysis of these two different techniques is performed, highlighting the characteristics of both approaches on the problem of identification of shrimp organs.
基于CNN和特征工程的对虾组织图像器官识别的比较研究
利用组织学图像对虾类器官进行生物学鉴定是一项复杂的任务。虾的组织学图像由于其质地和器官类别之间的相似性提出了很大的挑战。用于图像分类的特征工程和卷积神经网络(CNN)是帮助生物学家进行器官检测的合适方法。这项工作评估了使用大数据技术的视觉词袋(BOVW)和金字塔词袋(PBOW)模型用于图像分类,以及使用预训练的CNN进行相同分类任务的迁移学习。对这两种不同的技术进行了比较分析,突出了两种方法在虾器官鉴定问题上的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信