3D ICs: An opportunity for fully-integrated, dense and efficient power supplies

G. Pillonnet, Nicolas Jeanniot, P. Vivet
{"title":"3D ICs: An opportunity for fully-integrated, dense and efficient power supplies","authors":"G. Pillonnet, Nicolas Jeanniot, P. Vivet","doi":"10.1109/3DIC.2015.7334574","DOIUrl":null,"url":null,"abstract":"With 3D technologies, the in-package solution allows integrated, efficient and granular power supplies to be designed for multi-core processors. As the converter design obtains few benefits from the scaling, 3DIC allows the best technology to be chosen i.e. one which suits the DC-DC converter design. This paper evaluates the achievable power efficiency between on-die and in-package converters using a combination of active (28 and 65nm CMOS nodes) and passive (poly, MIM, vertical capacitor) layers. Based on the same load power consumption, on-die and in-package switched capacitor converters achieve 65% and 78% efficiency, respectively, in a 1mm2 silicon area. An additional high density capacitance layer (100nF/mm2) improves efficiency by more than 20 points in 65nm for the same surface which emphasizes the need for dedicated technology for better power management integration. This paper shows that in-package power management is a key alternative for fully-integrated, dense and efficient power supplies.","PeriodicalId":253726,"journal":{"name":"2015 International 3D Systems Integration Conference (3DIC)","volume":"716 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International 3D Systems Integration Conference (3DIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIC.2015.7334574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With 3D technologies, the in-package solution allows integrated, efficient and granular power supplies to be designed for multi-core processors. As the converter design obtains few benefits from the scaling, 3DIC allows the best technology to be chosen i.e. one which suits the DC-DC converter design. This paper evaluates the achievable power efficiency between on-die and in-package converters using a combination of active (28 and 65nm CMOS nodes) and passive (poly, MIM, vertical capacitor) layers. Based on the same load power consumption, on-die and in-package switched capacitor converters achieve 65% and 78% efficiency, respectively, in a 1mm2 silicon area. An additional high density capacitance layer (100nF/mm2) improves efficiency by more than 20 points in 65nm for the same surface which emphasizes the need for dedicated technology for better power management integration. This paper shows that in-package power management is a key alternative for fully-integrated, dense and efficient power supplies.
3D集成电路:实现完全集成、密集和高效电源的机会
借助3D技术,封装内解决方案允许为多核处理器设计集成,高效和粒度的电源。由于转换器设计从缩放中获得的好处很少,3DIC允许选择最佳技术,即适合DC-DC转换器设计的技术。本文评估了采用有源(28和65nm CMOS节点)和无源(聚、MIM、垂直电容器)层组合的片上和封装内转换器之间可实现的功率效率。基于相同的负载功耗,片上和封装内开关电容转换器在1mm2硅面积上分别实现65%和78%的效率。额外的高密度电容层(100nF/mm2)在相同的表面上可将65nm的效率提高20多个点,这强调了对专用技术的需求,以实现更好的电源管理集成。本文表明,封装内电源管理是完全集成、密集和高效电源的关键替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信