Signature Verification Using Convolutional Neural Network

Shayekh Mohiuddin Ahmed Navid, Shamima Haque Priya, Nabiul Hoque Khandakar, Zannatul Ferdous, A. B. Haque
{"title":"Signature Verification Using Convolutional Neural Network","authors":"Shayekh Mohiuddin Ahmed Navid, Shamima Haque Priya, Nabiul Hoque Khandakar, Zannatul Ferdous, A. B. Haque","doi":"10.1109/RAAICON48939.2019.19","DOIUrl":null,"url":null,"abstract":"Signatures are widely used to validate the authentication of an individual. A robust method is still awaited that can correctly certify the authenticity of a signature. The proposed solution provided in this paper is going to help individuals to distinguish signatures for determining whether a signature is forged or genuine. In our system, we aimed to automate the process of signature verification using Convolutional Neural Networks. Our model is constructed on top of a pre-trained Convolutional Neural Network called the VGG-19. We evaluated our model on widely accredited signature datasets with a multitude of genuine signature samples sourced from ICDAR[3], CEDAR[1] and Kaggle[2]; achieving accuracies of 100%, 88%, and 94.44% respectively. Our analysis shows that our proposed model can classify the signature if they do not closely resemble the genuine signature.","PeriodicalId":102214,"journal":{"name":"2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAICON48939.2019.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signatures are widely used to validate the authentication of an individual. A robust method is still awaited that can correctly certify the authenticity of a signature. The proposed solution provided in this paper is going to help individuals to distinguish signatures for determining whether a signature is forged or genuine. In our system, we aimed to automate the process of signature verification using Convolutional Neural Networks. Our model is constructed on top of a pre-trained Convolutional Neural Network called the VGG-19. We evaluated our model on widely accredited signature datasets with a multitude of genuine signature samples sourced from ICDAR[3], CEDAR[1] and Kaggle[2]; achieving accuracies of 100%, 88%, and 94.44% respectively. Our analysis shows that our proposed model can classify the signature if they do not closely resemble the genuine signature.
基于卷积神经网络的签名验证
签名被广泛用于验证个人身份验证。一种能够正确地证明签名真实性的健壮方法仍在等待中。本文提出的解决方案将帮助个人区分签名,以确定签名是伪造的还是真实的。在我们的系统中,我们的目标是使用卷积神经网络自动化签名验证过程。我们的模型建立在一个预训练的卷积神经网络VGG-19之上。我们使用来自ICDAR[3]、CEDAR[1]和Kaggle[2]的大量真实签名样本,在广泛认可的签名数据集上评估了我们的模型;准确率分别达到100%、88%和94.44%。我们的分析表明,我们提出的模型可以对签名进行分类,如果他们不太像真实的签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信