{"title":"Two-Qubit Quantum Gates to Reduce the Quantum Cost of Reversible Circuit","authors":"M. Rahman, A. Banerjee, G. Dueck, A. Pathak","doi":"10.1109/ISMVL.2011.56","DOIUrl":null,"url":null,"abstract":"This paper presents a quantum gate library that consists of all possible two-qubit quantum gates which do not produce entangled states. The quantum cost of each two-qubit gate in the proposed library is one. Therefore, these gates can be used to reduce the quantum costs of reversible circuits. Experimental results show a significant reduction of quantum cost in benchmark circuits. The resulting circuits could be further optimized with existing tools, such as quantum template matching.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper presents a quantum gate library that consists of all possible two-qubit quantum gates which do not produce entangled states. The quantum cost of each two-qubit gate in the proposed library is one. Therefore, these gates can be used to reduce the quantum costs of reversible circuits. Experimental results show a significant reduction of quantum cost in benchmark circuits. The resulting circuits could be further optimized with existing tools, such as quantum template matching.