B. Yousefzadeh, Wei Wu, B. Buter, K. Makinwa, Michiel Pertijs
{"title":"A compact sensor readout circuit with combined temperature, capacitance and voltage sensing functionality","authors":"B. Yousefzadeh, Wei Wu, B. Buter, K. Makinwa, Michiel Pertijs","doi":"10.23919/VLSIC.2017.8008555","DOIUrl":null,"url":null,"abstract":"This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (−55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.","PeriodicalId":176340,"journal":{"name":"2017 Symposium on VLSI Circuits","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2017.8008555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (−55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.