An Efficient Heuristic for Linear Decomposition of Index Generation Functions

Shinobu Nagayama, Tsutomu Sasao, J. T. Butler
{"title":"An Efficient Heuristic for Linear Decomposition of Index Generation Functions","authors":"Shinobu Nagayama, Tsutomu Sasao, J. T. Butler","doi":"10.1109/ISMVL.2016.52","DOIUrl":null,"url":null,"abstract":"This paper proposes a heuristic for linear decomposition of index generation functions using a balanced decision tree. The proposed heuristic finds a good linear decomposition of an index generation function by recursively dividing aset of its function values into two balanced subsets. Since the proposed heuristic is fast and requires a small amount of memory, it is applicable even to large index generation functions that cannot be solved in a reasonable time by existing heuristics. This paper shows time and space complexities of the proposed heuristic, and experimental results using some large examples to show its efficiency.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes a heuristic for linear decomposition of index generation functions using a balanced decision tree. The proposed heuristic finds a good linear decomposition of an index generation function by recursively dividing aset of its function values into two balanced subsets. Since the proposed heuristic is fast and requires a small amount of memory, it is applicable even to large index generation functions that cannot be solved in a reasonable time by existing heuristics. This paper shows time and space complexities of the proposed heuristic, and experimental results using some large examples to show its efficiency.
索引生成函数线性分解的一种有效启发式算法
提出了一种基于平衡决策树的指标生成函数线性分解的启发式算法。提出的启发式算法通过递归地将索引生成函数的一组函数值划分为两个平衡的子集,从而找到一个良好的线性分解。由于所提出的启发式算法速度快,占用内存少,因此它甚至适用于现有启发式算法无法在合理时间内解决的大型索引生成函数。文中给出了启发式算法在时间和空间上的复杂性,并通过一些大样本的实验结果证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信