{"title":"An Efficient Heuristic for Linear Decomposition of Index Generation Functions","authors":"Shinobu Nagayama, Tsutomu Sasao, J. T. Butler","doi":"10.1109/ISMVL.2016.52","DOIUrl":null,"url":null,"abstract":"This paper proposes a heuristic for linear decomposition of index generation functions using a balanced decision tree. The proposed heuristic finds a good linear decomposition of an index generation function by recursively dividing aset of its function values into two balanced subsets. Since the proposed heuristic is fast and requires a small amount of memory, it is applicable even to large index generation functions that cannot be solved in a reasonable time by existing heuristics. This paper shows time and space complexities of the proposed heuristic, and experimental results using some large examples to show its efficiency.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper proposes a heuristic for linear decomposition of index generation functions using a balanced decision tree. The proposed heuristic finds a good linear decomposition of an index generation function by recursively dividing aset of its function values into two balanced subsets. Since the proposed heuristic is fast and requires a small amount of memory, it is applicable even to large index generation functions that cannot be solved in a reasonable time by existing heuristics. This paper shows time and space complexities of the proposed heuristic, and experimental results using some large examples to show its efficiency.