Research of the Equipment Calibration Methods for Fertilizers Particles Distribution by Size Using Image Processing Measurement Method

Andrius Laucka, Vaida Adaskeviciute, A. Valinevicius, D. Andriukaitis
{"title":"Research of the Equipment Calibration Methods for Fertilizers Particles Distribution by Size Using Image Processing Measurement Method","authors":"Andrius Laucka, Vaida Adaskeviciute, A. Valinevicius, D. Andriukaitis","doi":"10.1109/MMAR.2018.8486109","DOIUrl":null,"url":null,"abstract":"Image processing technologies nowadays are widely used in quality control. A new automated quality control system saves resources. Quality control in the fertilizer industry is carried out without interruption. Only indirect measurements can achieve the required quality production efficiency. This article presents the methodology for calibrating indirect particle measurement methods. Particle analysis is performed by processing digital images. Correction of results is carried out with a sieve correction factor. In this work, studies have been carried out using linear regression polynomial function and artificial neural network. With the latter, the best results are achieved with sufficient data for training.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8486109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image processing technologies nowadays are widely used in quality control. A new automated quality control system saves resources. Quality control in the fertilizer industry is carried out without interruption. Only indirect measurements can achieve the required quality production efficiency. This article presents the methodology for calibrating indirect particle measurement methods. Particle analysis is performed by processing digital images. Correction of results is carried out with a sieve correction factor. In this work, studies have been carried out using linear regression polynomial function and artificial neural network. With the latter, the best results are achieved with sufficient data for training.
基于图像处理测量法的肥料粒度分布设备标定方法研究
图像处理技术在质量控制中得到了广泛的应用。新型自动化质量控制系统,节约资源。肥料工业的质量控制是不间断的。只有间接测量才能达到所要求的质量生产效率。本文介绍了间接粒子测量方法的标定方法。粒子分析是通过处理数字图像来完成的。用筛校正系数对结果进行校正。在这项工作中,使用线性回归多项式函数和人工神经网络进行研究。对于后者,在有足够的数据进行训练的情况下,可以获得最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信