Fine Grained Sentiment Analysis of Malayalam Tweets Using Lexicon Based and Machine Learning Based Approaches

S. S, Pramod K V
{"title":"Fine Grained Sentiment Analysis of Malayalam Tweets Using Lexicon Based and Machine Learning Based Approaches","authors":"S. S, Pramod K V","doi":"10.1109/ICNTE51185.2021.9487741","DOIUrl":null,"url":null,"abstract":"Fine-Grained Sentiment Analysis (FGSA) of Malayalam Tweets have been implemented in this work. The tweets are classified into positive, strongly positive, negative, strongly negative, and neutral sentiments. Both lexicon-based and machine learning-based approaches are used for sentiment classification of Malayalam Tweets. Lexicon based approach uses both dictionary-based and corpus-based approach. The dictionary-based approach is used in this work. The machine learning algorithms such as Support Vector Machine (SVM) and Random Forest (RF) classifiers are used for sentiment classification of the dataset. Bag of Words (BoW), Term-Frequency vs. Inverse Document Frequency (TF-IDF), and Sentiwordnet feature matrices are used to vectorize the input dataset. Lexicon based approach got an accuracy of 84.8%. In machine learning algorithms, the SVM (kernel = linear), SVM (kernel = RBF) and RF with the Sentiwordnet feature vector got an accuracy of 92.6%, 92.9%, and 93.4%, respectively.","PeriodicalId":358412,"journal":{"name":"2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNTE51185.2021.9487741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fine-Grained Sentiment Analysis (FGSA) of Malayalam Tweets have been implemented in this work. The tweets are classified into positive, strongly positive, negative, strongly negative, and neutral sentiments. Both lexicon-based and machine learning-based approaches are used for sentiment classification of Malayalam Tweets. Lexicon based approach uses both dictionary-based and corpus-based approach. The dictionary-based approach is used in this work. The machine learning algorithms such as Support Vector Machine (SVM) and Random Forest (RF) classifiers are used for sentiment classification of the dataset. Bag of Words (BoW), Term-Frequency vs. Inverse Document Frequency (TF-IDF), and Sentiwordnet feature matrices are used to vectorize the input dataset. Lexicon based approach got an accuracy of 84.8%. In machine learning algorithms, the SVM (kernel = linear), SVM (kernel = RBF) and RF with the Sentiwordnet feature vector got an accuracy of 92.6%, 92.9%, and 93.4%, respectively.
使用基于词典和机器学习的方法对马拉雅拉姆语推文进行细粒度情感分析
在这项工作中实现了马拉雅拉姆语推文的细粒度情感分析(FGSA)。这些推文分为积极、强烈积极、消极、强烈消极和中性情绪。基于词典和基于机器学习的两种方法都被用于马拉雅拉姆语推文的情感分类。基于词典的方法同时使用基于词典和基于语料库的方法。在这项工作中使用了基于字典的方法。采用支持向量机(SVM)和随机森林(RF)分类器等机器学习算法对数据集进行情感分类。使用词袋(BoW)、词频与逆文档频率(TF-IDF)和Sentiwordnet特征矩阵对输入数据集进行矢量化。基于词典的方法准确率为84.8%。在机器学习算法中,基于Sentiwordnet特征向量的SVM (kernel = linear)、SVM (kernel = RBF)和RF的准确率分别为92.6%、92.9%和93.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信