Random S-Box generation in AES by changing irreducible polynomial

I. Das, S. Nath, S. Roy, S. Mondal
{"title":"Random S-Box generation in AES by changing irreducible polynomial","authors":"I. Das, S. Nath, S. Roy, S. Mondal","doi":"10.1109/CODIS.2012.6422263","DOIUrl":null,"url":null,"abstract":"The S-Box and Inverse S-Box in the tradition advance encryption standard is fixed and it is made by the composite field arithmatic to find the multiplicative inverse in the finite field GF (28). But in traditional AES the use of irreducible polynomial m(x) = x8+ x4 + x3 + x+1 to find out multiplicative inverse, is known to the attacker. So if we can make use of different irreducible polynomial every time to the finite field of GF (28) and send this the receiver combined with the secret key, then every time a new irreducible polynomial is used and a random S-Box is generated. Hence, the security of the algorithm is enhanced. In this paper, we devise an algorithm, which make use of different irreducible polynomial to finite field of GF (28) to make random S-Box and Inverse S-Box.","PeriodicalId":274831,"journal":{"name":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODIS.2012.6422263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The S-Box and Inverse S-Box in the tradition advance encryption standard is fixed and it is made by the composite field arithmatic to find the multiplicative inverse in the finite field GF (28). But in traditional AES the use of irreducible polynomial m(x) = x8+ x4 + x3 + x+1 to find out multiplicative inverse, is known to the attacker. So if we can make use of different irreducible polynomial every time to the finite field of GF (28) and send this the receiver combined with the secret key, then every time a new irreducible polynomial is used and a random S-Box is generated. Hence, the security of the algorithm is enhanced. In this paper, we devise an algorithm, which make use of different irreducible polynomial to finite field of GF (28) to make random S-Box and Inverse S-Box.
改变不可约多项式生成AES随机s盒
传统的超前加密标准中的S-Box和逆S-Box是固定的,在有限域GF(28)中通过复合域算法求乘逆。但在传统AES中使用不可约多项式m(x) = x8+ x4 + x3 + x+1求乘法逆,被攻击者所知。因此,如果我们每次都对GF(28)的有限域使用不同的不可约多项式,并将其与密钥一起发送给接收者,则每次都使用一个新的不可约多项式,并生成一个随机s盒。从而提高了算法的安全性。本文设计了一种利用GF(28)有限域的不同不可约多项式构造随机s盒和逆s盒的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信