{"title":"Tapeout of a RISC-V crypto chip with hardware trojans: a case-study on trojan design and pre-silicon detectability","authors":"A. Hepp, G. Sigl","doi":"10.1145/3457388.3458869","DOIUrl":null,"url":null,"abstract":"This paper presents design and integration of four hardware Trojans (HTs) into a post-quantum-crypto-enhanced RISC-V micro-controller, which was taped-out in September 2020. We cover multiple HTs ranging from a simple denial-of-service HT to a side-channel HT transmitting arbitrary information to external observers. For each HT, we give estimations of the detectability by the microcontroller-integration team using design tools or by simulation. We conclude that some HTs are easily detected by design-tool warnings. Other powerful HTs, modifying software control flow, cause little disturbance, but require covert executable code modifications. With this work, we strengthen awareness for HT risks and present a realistic testing device for HT detection tools.","PeriodicalId":136482,"journal":{"name":"Proceedings of the 18th ACM International Conference on Computing Frontiers","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457388.3458869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents design and integration of four hardware Trojans (HTs) into a post-quantum-crypto-enhanced RISC-V micro-controller, which was taped-out in September 2020. We cover multiple HTs ranging from a simple denial-of-service HT to a side-channel HT transmitting arbitrary information to external observers. For each HT, we give estimations of the detectability by the microcontroller-integration team using design tools or by simulation. We conclude that some HTs are easily detected by design-tool warnings. Other powerful HTs, modifying software control flow, cause little disturbance, but require covert executable code modifications. With this work, we strengthen awareness for HT risks and present a realistic testing device for HT detection tools.