A New Parameter Selection Method of Neural Network

Gui-fang Wu, Se-young Jang, Hoon-Sung Kwak, Jie-xin Pu
{"title":"A New Parameter Selection Method of Neural Network","authors":"Gui-fang Wu, Se-young Jang, Hoon-Sung Kwak, Jie-xin Pu","doi":"10.1109/MUE.2008.99","DOIUrl":null,"url":null,"abstract":"A new parameter selection method of neural network is presented after researching parameter selection method of neural network deeply, and it is applied to surface defect online inspection system of cold rolled strips. The method exerted the merits of small-samples fully which was utilized to train and test neural network by every possible combination of parameters to get a group of neural network parameters by plotting histogram of recognition rate under different parameter combinations, and the parameters are regarded as optimized parameters of neural network. Experiments showed that a best recognition effect by using the parameters for neural network which are selected by the new parameter selection method can be achieved among all the parameters selected randomly for surface defect of cold rolled strips.","PeriodicalId":203066,"journal":{"name":"2008 International Conference on Multimedia and Ubiquitous Engineering (mue 2008)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Multimedia and Ubiquitous Engineering (mue 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MUE.2008.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new parameter selection method of neural network is presented after researching parameter selection method of neural network deeply, and it is applied to surface defect online inspection system of cold rolled strips. The method exerted the merits of small-samples fully which was utilized to train and test neural network by every possible combination of parameters to get a group of neural network parameters by plotting histogram of recognition rate under different parameter combinations, and the parameters are regarded as optimized parameters of neural network. Experiments showed that a best recognition effect by using the parameters for neural network which are selected by the new parameter selection method can be achieved among all the parameters selected randomly for surface defect of cold rolled strips.
一种新的神经网络参数选择方法
在深入研究神经网络参数选择方法的基础上,提出了一种新的神经网络参数选择方法,并将其应用于冷轧带钢表面缺陷在线检测系统中。该方法充分发挥小样本的优点,利用各种可能的参数组合对神经网络进行训练和测试,通过绘制不同参数组合下的识别率直方图得到一组神经网络参数,并将这些参数作为神经网络的优化参数。实验表明,在随机选择的冷轧带钢表面缺陷参数中,利用新参数选择方法所选择的神经网络参数可以获得最佳的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信