Updating Confidence in Beliefs

Brian Hill
{"title":"Updating Confidence in Beliefs","authors":"Brian Hill","doi":"10.2139/ssrn.3385116","DOIUrl":null,"url":null,"abstract":"Abstract This paper develops a belief update rule under ambiguity, motivated by the maxim: in the face of new information, retain those conditional beliefs in which you are more confident, and relinquish only those in which you have less confidence. We provide a preference-based axiomatisation, drawing on the account of confidence in beliefs developed in Hill (2013) . The proposed rule constitutes a general framework of which several existing rules for multiple priors (Full Bayesian, Maximum Likelihood) are special cases, but avoids the problems that these rules have with updating on complete ignorance. Moreover, it can handle surprising and null events, such as crises or reasoning in games, recovering traditional approaches, such as conditional probability systems, as special cases.","PeriodicalId":234020,"journal":{"name":"HEC Paris: Economics & Decision Sciences (Topic)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HEC Paris: Economics & Decision Sciences (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3385116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract This paper develops a belief update rule under ambiguity, motivated by the maxim: in the face of new information, retain those conditional beliefs in which you are more confident, and relinquish only those in which you have less confidence. We provide a preference-based axiomatisation, drawing on the account of confidence in beliefs developed in Hill (2013) . The proposed rule constitutes a general framework of which several existing rules for multiple priors (Full Bayesian, Maximum Likelihood) are special cases, but avoids the problems that these rules have with updating on complete ignorance. Moreover, it can handle surprising and null events, such as crises or reasoning in games, recovering traditional approaches, such as conditional probability systems, as special cases.
更新信念的信心
摘要:基于“面对新信息,保留对自己更有信心的条件信念,放弃对自己不太有信心的条件信念”这一准则,提出了模糊条件下的信念更新规则。我们提供了一个基于偏好的公理化,借鉴了Hill(2013)对信念的信心。提议的规则构成了一个通用框架,其中一些现有的多先验规则(全贝叶斯,最大似然)是特殊情况,但避免了这些规则在完全无知的情况下更新的问题。此外,它可以处理意外和无效事件,如危机或游戏中的推理,恢复传统方法,如条件概率系统,作为特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信