Influence of insulation model parameters on transfer function zero evaluated for diagnosis of oil-paper insulation

C. Banerjee, Saurabh, A. Baral, S. Chakravorti
{"title":"Influence of insulation model parameters on transfer function zero evaluated for diagnosis of oil-paper insulation","authors":"C. Banerjee, Saurabh, A. Baral, S. Chakravorti","doi":"10.1109/CATCON.2017.8280248","DOIUrl":null,"url":null,"abstract":"Conventional Debye Model is commonly used for analysis of dielectric response function evaluated from Polarization and Depolarization Current data. The same Polarization current profile when fitted to obtain insulation model, may result in different number of branches depending on curve fitting parameter. Zero of Transfer Function (evaluated using insulation Model parameters) having highest magnitude can be used to obtain performance parameters like paper-moisture and dissipation factor. In this present work, polarization current data from laboratory sample is measured at two different temperatures. This is followed by formulation of Conventional Debye Model parameters from each measurement. The two resulting insulation model structures are not identical in terms of number of branches and parameters therein as branch parameters depend on curve fitting. This paper investigates the influence of varying branch parameters of Conventional Debye Model on the values of performance parameters that are evaluated using Zero of insulation model Transfer Function.","PeriodicalId":250717,"journal":{"name":"2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCON.2017.8280248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Conventional Debye Model is commonly used for analysis of dielectric response function evaluated from Polarization and Depolarization Current data. The same Polarization current profile when fitted to obtain insulation model, may result in different number of branches depending on curve fitting parameter. Zero of Transfer Function (evaluated using insulation Model parameters) having highest magnitude can be used to obtain performance parameters like paper-moisture and dissipation factor. In this present work, polarization current data from laboratory sample is measured at two different temperatures. This is followed by formulation of Conventional Debye Model parameters from each measurement. The two resulting insulation model structures are not identical in terms of number of branches and parameters therein as branch parameters depend on curve fitting. This paper investigates the influence of varying branch parameters of Conventional Debye Model on the values of performance parameters that are evaluated using Zero of insulation model Transfer Function.
绝缘模型参数对油纸绝缘诊断传递函数零的影响
传统的德拜模型通常用于分析由极化和退极化电流数据计算的介电响应函数。在拟合相同的极化电流曲线得到绝缘模型时,不同的曲线拟合参数可能导致不同的支路数。传递函数的零点(使用绝缘模型参数评估)具有最高的量级,可用于获得纸张湿度和耗散系数等性能参数。在本工作中,测量了实验室样品在两种不同温度下的极化电流数据。然后根据每次测量得出常规德拜模型参数。由于分支参数依赖于曲线拟合,两种模型结构在分支数和分支参数上并不相同。本文研究了传统德拜模型中不同支路参数对绝缘模型传递函数为零的性能参数值的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信