Minimization of the 0-1 linear programming problem under linear constraints by using neural networks: synthesis and analysis

M. Aourid, B. Kaminska
{"title":"Minimization of the 0-1 linear programming problem under linear constraints by using neural networks: synthesis and analysis","authors":"M. Aourid, B. Kaminska","doi":"10.1109/81.502215","DOIUrl":null,"url":null,"abstract":"In this brief, we propose a new design: a Boolean Neural Network (BNN) for the 0-1 linear programming problem under inequalities constraints by using the connection between concave programming and integer programming problems. This connection is based on the concavity and penalty function methods. The general objective function obtained, which combines the objective function and constraints is fixed as the energy of the system. The simulation results for the new BNN show that the system converge rapidly within a few neural time constant.","PeriodicalId":104733,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/81.502215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this brief, we propose a new design: a Boolean Neural Network (BNN) for the 0-1 linear programming problem under inequalities constraints by using the connection between concave programming and integer programming problems. This connection is based on the concavity and penalty function methods. The general objective function obtained, which combines the objective function and constraints is fixed as the energy of the system. The simulation results for the new BNN show that the system converge rapidly within a few neural time constant.
用神经网络求解线性约束下的0-1线性规划问题:综合与分析
本文利用凹规划问题与整数规划问题之间的联系,提出了一种新的布尔神经网络(BNN)设计方法,用于不等式约束下的0-1线性规划问题。这种联系是基于凹度法和罚函数法。将目标函数与约束条件结合得到的一般目标函数固定为系统的能量。仿真结果表明,该算法在几个神经时间常数内收敛速度较快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信