Numerical simulation of glow corona discharge in air based on a plasma chemical model

Mian Xiao, Hengxin He, Lipeng Liu, Bin Luo, Junru Che, Junjia He
{"title":"Numerical simulation of glow corona discharge in air based on a plasma chemical model","authors":"Mian Xiao, Hengxin He, Lipeng Liu, Bin Luo, Junru Che, Junjia He","doi":"10.1109/eic49891.2021.9612282","DOIUrl":null,"url":null,"abstract":"Glow corona is one of the major forms of positive DC corona discharge. In order to reveal the microscopic physical process of glow corona in air, a plasma chemical model of glow corona discharge in 1D coaxial wire was established based on COMSOL, considering 28 species and 127 chemical reactions (CKS, a comprehensive kinetic scheme), and the photoionization process. The temporal and spatial distribution and evolution of the major species during the glow corona discharge were obtained. The results show that the major positive ions in the gap are $\\mathbf{O}_{2}\\ ^{+},$ which are distributed in a shell shape. Negative ions are O- $,\\mathbf{O}_{\\boldsymbol{2}}\\ ^{-}$ and $\\mathbf{O}_{\\boldsymbol{3}}\\ ^{-}$, which mainly exist in the ionization layer. $\\mathbf{O}^{-}$ and $\\mathbf{O}_{\\boldsymbol{2}}\\ ^{-}$ participate in the detachment and provide seed electrons for the next pulse. The classical fluid model (FPM, a fully coupled physical model) fails to fully consider the detachment process of negative ions, resulting in the steepness and peak-to-peak value of current waves are too large. In order to accurately predict the current oscillation waveforms, in addition to $\\mathbf{O}_{\\boldsymbol{2}}\\ ^{-}$, it is also necessary to consider $\\mathbf{O}^{-}$ in detachment process.","PeriodicalId":298313,"journal":{"name":"2021 IEEE Electrical Insulation Conference (EIC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Electrical Insulation Conference (EIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eic49891.2021.9612282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glow corona is one of the major forms of positive DC corona discharge. In order to reveal the microscopic physical process of glow corona in air, a plasma chemical model of glow corona discharge in 1D coaxial wire was established based on COMSOL, considering 28 species and 127 chemical reactions (CKS, a comprehensive kinetic scheme), and the photoionization process. The temporal and spatial distribution and evolution of the major species during the glow corona discharge were obtained. The results show that the major positive ions in the gap are $\mathbf{O}_{2}\ ^{+},$ which are distributed in a shell shape. Negative ions are O- $,\mathbf{O}_{\boldsymbol{2}}\ ^{-}$ and $\mathbf{O}_{\boldsymbol{3}}\ ^{-}$, which mainly exist in the ionization layer. $\mathbf{O}^{-}$ and $\mathbf{O}_{\boldsymbol{2}}\ ^{-}$ participate in the detachment and provide seed electrons for the next pulse. The classical fluid model (FPM, a fully coupled physical model) fails to fully consider the detachment process of negative ions, resulting in the steepness and peak-to-peak value of current waves are too large. In order to accurately predict the current oscillation waveforms, in addition to $\mathbf{O}_{\boldsymbol{2}}\ ^{-}$, it is also necessary to consider $\mathbf{O}^{-}$ in detachment process.
基于等离子体化学模型的空气辉光电晕放电数值模拟
辉光电晕是直流正电晕放电的主要形式之一。为了揭示空气中辉光电晕的微观物理过程,基于COMSOL软件,考虑28种127种化学反应(CKS,一种综合动力学方案)和光电离过程,建立了一维同轴导线辉光电晕放电的等离子体化学模型。得到了辉光电晕放电过程中主要物种的时空分布及其演化规律。结果表明:间隙内的正离子主要为$\mathbf{O}_{2}\ ^{+} $,呈壳状分布;负离子有O- $、\mathbf{O}_{\boldsymbol{2}}\ ^{-}$和$\mathbf{O}_{\boldsymbol{3}}\ ^{-}$,主要存在于电离层。$\mathbf{O}^{-}$和$\mathbf{O}_{\boldsymbol{2}}\ ^{-}$参与分离并为下一个脉冲提供种子电子。经典流体模型(FPM,一种完全耦合的物理模型)没有充分考虑负离子的脱离过程,导致电流波的陡度和峰峰值过大。为了准确预测电流振荡波形,除$\mathbf{O}_{\boldsymbol{2}}\ ^{-}$外,还需要考虑分离过程中的$\mathbf{O}^{-}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信