J. Valinejad, M. Marzband, K. Busawon, J. Kyyrä, E. Pouresmaeil
{"title":"Investigating Wind Generation Investment Indices in Multi-Stage Planning","authors":"J. Valinejad, M. Marzband, K. Busawon, J. Kyyrä, E. Pouresmaeil","doi":"10.1109/EFEA.2018.8617106","DOIUrl":null,"url":null,"abstract":"This paper presents a Multi-stage stochastic bi-level model for the expansion planning of Wind resources in power systems at a multi-stage horizon. In this paper, the power system consists of a combination of fossil fuel technologies and Wind resources for investment. Demand is characterized by a certain number of demand blocks. The uncertainty of demand for each this block (for each time period of the curve) is determined by the scenario. Afterwards, the suggested model is converted to a mathematical programming with some equilibrium constraints. Following that, after linearization, a mixed integer linear program is obtained. This framework is examined on the IEEE RTS 24-bus network. The obtained simulation results confirm that this model can be appropriately used as a means to analyze the behavior of investments in wind and thermal units.","PeriodicalId":447143,"journal":{"name":"2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFEA.2018.8617106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a Multi-stage stochastic bi-level model for the expansion planning of Wind resources in power systems at a multi-stage horizon. In this paper, the power system consists of a combination of fossil fuel technologies and Wind resources for investment. Demand is characterized by a certain number of demand blocks. The uncertainty of demand for each this block (for each time period of the curve) is determined by the scenario. Afterwards, the suggested model is converted to a mathematical programming with some equilibrium constraints. Following that, after linearization, a mixed integer linear program is obtained. This framework is examined on the IEEE RTS 24-bus network. The obtained simulation results confirm that this model can be appropriately used as a means to analyze the behavior of investments in wind and thermal units.