Feature extraction and classification of woven fabric using optimized Haralick parameters: A rough set based approach

Jayanta K. Chandra, Madhumanti Majumdar, Sourish Sarkar
{"title":"Feature extraction and classification of woven fabric using optimized Haralick parameters: A rough set based approach","authors":"Jayanta K. Chandra, Madhumanti Majumdar, Sourish Sarkar","doi":"10.1109/CIEC.2016.7513748","DOIUrl":null,"url":null,"abstract":"Classification of fabric samples into classes is highly required for automatic fabric inspection systems, as many of the fabric defects are defined relative to the fabric classes. The texture of the fabric surface is the best way to represent a fabric class, corresponding to which the statistical measures are the Haralick parameters. As all of the Haralick parameters are not responsible for fabric classification and there are no universal Haralick parameters for classifying all types of fabric samples, so it is necessary to determine a subset of Haralick parameters that gives best classification result for the fabric classes under consideration. This subset of Haralick parameters is termed as optimized Haralick parameters of the fabric classes under consideration, which has been determined by using the rough set theory. The developed system has been tested on TILDA database and its superiority with respect to the non-optimized Haralick parameters is established in terms of classification result and separability index.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Classification of fabric samples into classes is highly required for automatic fabric inspection systems, as many of the fabric defects are defined relative to the fabric classes. The texture of the fabric surface is the best way to represent a fabric class, corresponding to which the statistical measures are the Haralick parameters. As all of the Haralick parameters are not responsible for fabric classification and there are no universal Haralick parameters for classifying all types of fabric samples, so it is necessary to determine a subset of Haralick parameters that gives best classification result for the fabric classes under consideration. This subset of Haralick parameters is termed as optimized Haralick parameters of the fabric classes under consideration, which has been determined by using the rough set theory. The developed system has been tested on TILDA database and its superiority with respect to the non-optimized Haralick parameters is established in terms of classification result and separability index.
基于优化Haralick参数的机织织物特征提取与分类:基于粗糙集的方法
织物自动检测系统非常需要对织物样品进行分类,因为许多织物缺陷都是根据织物类别来定义的。织物表面的纹理是表示织物类的最佳方式,与之相对应的统计度量是哈拉里克参数。由于并非所有的Haralick参数都对织物分类负责,也没有统一的Haralick参数对所有类型的织物样本进行分类,因此有必要确定Haralick参数的一个子集,使其对所考虑的织物类别给出最佳的分类结果。该Haralick参数子集称为所考虑的织物类的优化Haralick参数,该参数是用粗糙集理论确定的。在TILDA数据库上对所开发的系统进行了测试,从分类结果和可分性指标两方面证明了该系统相对于未优化的Haralick参数的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信