Z. Ling, K. Majumdar, S. Sakar, S. Mathew, Juntao Zhu, K. Gopinadhan, T. Venkatesan, K. Ang
{"title":"Nickel-phosphide contact for effective Schottky barrier modulation in black phosphorus p-channel transistors","authors":"Z. Ling, K. Majumdar, S. Sakar, S. Mathew, Juntao Zhu, K. Gopinadhan, T. Venkatesan, K. Ang","doi":"10.1109/VLSI-TSA.2016.7480535","DOIUrl":null,"url":null,"abstract":"We demonstrate a new contact technology for realizing a near band edge contact Schottky barrier height (ΦB) in black phosphorus (BP) p-channel transistors. This is achieved via the use of high work function nickel (Ni) and thermal anneal to produce a novel nickel-phosphide (Ni2P) alloy which enables a record low hole ΦB of ~12 meV. The formation of reactive Ni2P/BP contact was found to further improve the transmission probability as compared to the Ni/BP contact. Moreover, the penetration of Ni2P in the source and drain regions could additionally reduce the parasitic series resistance, leading to drive current improvement.","PeriodicalId":441941,"journal":{"name":"2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2016.7480535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a new contact technology for realizing a near band edge contact Schottky barrier height (ΦB) in black phosphorus (BP) p-channel transistors. This is achieved via the use of high work function nickel (Ni) and thermal anneal to produce a novel nickel-phosphide (Ni2P) alloy which enables a record low hole ΦB of ~12 meV. The formation of reactive Ni2P/BP contact was found to further improve the transmission probability as compared to the Ni/BP contact. Moreover, the penetration of Ni2P in the source and drain regions could additionally reduce the parasitic series resistance, leading to drive current improvement.