A Space Efficient Clustered Visualization of Large Graphs

M. Huang, Quang Vinh Nguyen
{"title":"A Space Efficient Clustered Visualization of Large Graphs","authors":"M. Huang, Quang Vinh Nguyen","doi":"10.1109/ICIG.2007.31","DOIUrl":null,"url":null,"abstract":"This paper proposes a new technique for visualizing large graphs of several ten thousands of vertices and edges. To achieve the graph abstraction, a hierarchical clustered graph is extracted from a general large graph based on the community structures which are discovered in the graph. An enclosure geometrical partitioning algorithm is then applied to achieve the space optimization. For graph drawing, we technically use the combination of a spring-embbeder algorithm and circular drawings that archives the goal of optimization of display space and aesthetical niceness. We also discuss an associated interaction mechanism accompanied with the layout solution. Our interaction not only allows users to navigate hierarchically up and down through the entire clustered graph, but also provides a way to navigate multiple clusters concurrently. Animation is also implemented to preserve users' mental maps during the interaction.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

This paper proposes a new technique for visualizing large graphs of several ten thousands of vertices and edges. To achieve the graph abstraction, a hierarchical clustered graph is extracted from a general large graph based on the community structures which are discovered in the graph. An enclosure geometrical partitioning algorithm is then applied to achieve the space optimization. For graph drawing, we technically use the combination of a spring-embbeder algorithm and circular drawings that archives the goal of optimization of display space and aesthetical niceness. We also discuss an associated interaction mechanism accompanied with the layout solution. Our interaction not only allows users to navigate hierarchically up and down through the entire clustered graph, but also provides a way to navigate multiple clusters concurrently. Animation is also implemented to preserve users' mental maps during the interaction.
大型图的空间高效聚类可视化
本文提出了一种新的技术,用于可视化数万个顶点和边的大型图。为了实现图的抽象,基于在图中发现的群体结构,从一般的大图中提取层次聚类图。然后采用围合几何划分算法实现空间优化。对于图形绘制,我们在技术上使用了弹簧嵌入算法和圆形图形的结合,以优化显示空间和美观性为目标。我们还讨论了与布局解决方案相关的交互机制。我们的交互不仅允许用户在整个集群图中分层上下导航,而且还提供了一种同时导航多个集群的方法。动画还实现了在交互过程中保存用户的心理地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信