An Energy-Efficient K-means Clustering FPGA Accelerator via Most-Significant Digit First Arithmetic

S. Gorgin, M. Gholamrezaei, D. Javaheri, Jeong-A. Lee
{"title":"An Energy-Efficient K-means Clustering FPGA Accelerator via Most-Significant Digit First Arithmetic","authors":"S. Gorgin, M. Gholamrezaei, D. Javaheri, Jeong-A. Lee","doi":"10.1109/ICFPT56656.2022.9974222","DOIUrl":null,"url":null,"abstract":"K-means clustering is the most well-known unsupervised learning method that partitions the input dataset into $K$ clusters based on the similarity between the data samples. In this paper, to achieve an energy-efficient implementation without sacrificing performance, we take advantage of massive parallelism and digit-level pipelining via FPGA and the most-significant digit first arithmetic. Having the result of the most-significant digits in advance provides the possibility of early termination for unnecessary computations and fetching just the required most-significant part of data points from memory. This early termination technique significantly increases performance and decreases energy consumption. Our experimental results from various datasets and comparisons with the state-of-the-art FPGA accelerators indicate that our proposed design has effectively reduced energy consumption without any performance loss.","PeriodicalId":239314,"journal":{"name":"2022 International Conference on Field-Programmable Technology (ICFPT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT56656.2022.9974222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

K-means clustering is the most well-known unsupervised learning method that partitions the input dataset into $K$ clusters based on the similarity between the data samples. In this paper, to achieve an energy-efficient implementation without sacrificing performance, we take advantage of massive parallelism and digit-level pipelining via FPGA and the most-significant digit first arithmetic. Having the result of the most-significant digits in advance provides the possibility of early termination for unnecessary computations and fetching just the required most-significant part of data points from memory. This early termination technique significantly increases performance and decreases energy consumption. Our experimental results from various datasets and comparisons with the state-of-the-art FPGA accelerators indicate that our proposed design has effectively reduced energy consumption without any performance loss.
基于最高有效位优先算法的高效K-means FPGA聚类加速器
K-means聚类是最著名的无监督学习方法,它根据数据样本之间的相似性将输入数据集划分为$K$类。在本文中,为了在不牺牲性能的情况下实现节能,我们利用FPGA的大规模并行性和数字级流水线以及最高有效数字优先算法。提前获得最高有效数字的结果,可以提前终止不必要的计算,并只从内存中获取所需的数据点的最高有效部分。这种早期终止技术显著提高了性能并降低了能耗。我们的各种数据集的实验结果以及与最先进的FPGA加速器的比较表明,我们提出的设计在没有任何性能损失的情况下有效地降低了能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信