Optimal study of distributed generation impact on electrical distribution networks using GA and generalized reduced gradient

S. R. Fahim, W. Helmy
{"title":"Optimal study of distributed generation impact on electrical distribution networks using GA and generalized reduced gradient","authors":"S. R. Fahim, W. Helmy","doi":"10.1109/ICENGTECHNOL.2012.6396131","DOIUrl":null,"url":null,"abstract":"This paper presents the effect of Distributed Generators (DG) existence in the electrical power distribution networks taking IEEE 14 and IEEE 30 bus test feeders as proposed systems. The analysis is done to examine the effect on the overall system losses and voltage profile. The aim behind this study is to obtain the optimum location and penetration level of the added DG unit in order to decrease the losses and enhance the voltage profile. The optimization is done using two different optimization techniques, generalized reduced gradient (GRG) and genetic algorithm (GA). The power system dynamic program MATLAB is used for this study. The simulation results are analyzed to show the effectiveness of GA over the GRG algorithm.","PeriodicalId":149484,"journal":{"name":"2012 International Conference on Engineering and Technology (ICET)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Engineering and Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICENGTECHNOL.2012.6396131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents the effect of Distributed Generators (DG) existence in the electrical power distribution networks taking IEEE 14 and IEEE 30 bus test feeders as proposed systems. The analysis is done to examine the effect on the overall system losses and voltage profile. The aim behind this study is to obtain the optimum location and penetration level of the added DG unit in order to decrease the losses and enhance the voltage profile. The optimization is done using two different optimization techniques, generalized reduced gradient (GRG) and genetic algorithm (GA). The power system dynamic program MATLAB is used for this study. The simulation results are analyzed to show the effectiveness of GA over the GRG algorithm.
基于遗传算法和广义约简梯度的分布式发电对配电网影响优化研究
本文以ieee14和ieee30母线测试馈线系统为例,分析了分布式发电机(DG)的存在对配电网的影响。分析了对整个系统损耗和电压分布的影响。本研究的目的是获得添加DG单元的最佳位置和渗透水平,以减少损耗并提高电压分布。优化采用两种不同的优化技术,即广义约简梯度(GRG)和遗传算法(GA)。本文采用电力系统动态程序MATLAB进行研究。仿真结果表明,遗传算法优于GRG算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信