SURE-based optimal selection of regularization parameter for total variation deconvolution

Feng Xue, Peng Liu, Jiaqi Liu, Xin Liu, Hongyan Liu
{"title":"SURE-based optimal selection of regularization parameter for total variation deconvolution","authors":"Feng Xue, Peng Liu, Jiaqi Liu, Xin Liu, Hongyan Liu","doi":"10.1109/ICITM.2017.7917917","DOIUrl":null,"url":null,"abstract":"Recently, total variation based image deconvolution has shown its superior performance. The restoration quality is generally sensitive to the value of regularization parameter. In this work, we develop a data-driven optimization scheme based on minimization of Stein's unbiased risk estimate (SURE)—statistically equivalent to mean squared error (MSE). Based on a typical alternating direction method of multipliers (ADMM), we propose a recursive evaluation of SURE for any given regularization parameter, where the optimal value is identified by the minimum SURE. Numerical experiments show that the proposed method leads to highly accurate estimate of regularization parameter and nearly optimal deconvolution.","PeriodicalId":340270,"journal":{"name":"2017 6th International Conference on Industrial Technology and Management (ICITM)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Industrial Technology and Management (ICITM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITM.2017.7917917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, total variation based image deconvolution has shown its superior performance. The restoration quality is generally sensitive to the value of regularization parameter. In this work, we develop a data-driven optimization scheme based on minimization of Stein's unbiased risk estimate (SURE)—statistically equivalent to mean squared error (MSE). Based on a typical alternating direction method of multipliers (ADMM), we propose a recursive evaluation of SURE for any given regularization parameter, where the optimal value is identified by the minimum SURE. Numerical experiments show that the proposed method leads to highly accurate estimate of regularization parameter and nearly optimal deconvolution.
基于sure的全变差反褶积正则化参数优化选择
近年来,基于全变分的图像反褶积显示出其优越的性能。恢复质量一般对正则化参数的取值比较敏感。在这项工作中,我们开发了一种基于最小化Stein's无偏风险估计(SURE)的数据驱动优化方案-统计上等同于均方误差(MSE)。基于一种典型的交替方向乘法器(ADMM),我们提出了对任意给定正则化参数的确定性递归评估,其中最优值由最小确定性确定。数值实验表明,该方法具有较高的正则化参数估计精度和接近最优的反褶积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信