Comparison of genetic algorithm optimization on artificial neural network and support vector machine in intrusion detection system

A. Dastanpour, S. Ibrahim, Reza Mashinchi, A. Selamat
{"title":"Comparison of genetic algorithm optimization on artificial neural network and support vector machine in intrusion detection system","authors":"A. Dastanpour, S. Ibrahim, Reza Mashinchi, A. Selamat","doi":"10.1109/ICOS.2014.7042412","DOIUrl":null,"url":null,"abstract":"As the technology trend in the recent years uses the systems with network bases, it is crucial to detect them from threats. In this study, the following methods are applied for detecting the network attacks: support vector machine (SVM) classifier, artificial Neural Networks (ANN), and Genetic Algorithms (GA). The objective of this study is to compare the outcomes of GA with SVM and GA with ANN and then comparing the outcomes of GA with SVM and GA with ANN and other algorithms. Knowledge Discovery and Data Mining (KDD CPU99) data set has been used in this paper for obtaining the results.","PeriodicalId":146332,"journal":{"name":"2014 IEEE Conference on Open Systems (ICOS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Open Systems (ICOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOS.2014.7042412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

As the technology trend in the recent years uses the systems with network bases, it is crucial to detect them from threats. In this study, the following methods are applied for detecting the network attacks: support vector machine (SVM) classifier, artificial Neural Networks (ANN), and Genetic Algorithms (GA). The objective of this study is to compare the outcomes of GA with SVM and GA with ANN and then comparing the outcomes of GA with SVM and GA with ANN and other algorithms. Knowledge Discovery and Data Mining (KDD CPU99) data set has been used in this paper for obtaining the results.
遗传算法优化人工神经网络与支持向量机在入侵检测系统中的比较
基于网络的系统是近年来的技术发展趋势,对其进行威胁检测显得尤为重要。本研究主要采用支持向量机(SVM)分类器、人工神经网络(ANN)和遗传算法(GA)检测网络攻击。本研究的目的是比较遗传算法与支持向量机、遗传算法与人工神经网络的结果,然后比较遗传算法与支持向量机、遗传算法与人工神经网络和其他算法的结果。本文使用知识发现和数据挖掘(KDD CPU99)数据集来获得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信