Riwei Zhang, Quanquan Liu, Shuting Cai, Chunbao Wang, Xin Zhang, L. Duan, Yongtian Lu, Bo Zhang, Zhengzhi Wu, Jing Guo
{"title":"Development of a Virtual Training System for Master-Slave Hip Replacement Surgery","authors":"Riwei Zhang, Quanquan Liu, Shuting Cai, Chunbao Wang, Xin Zhang, L. Duan, Yongtian Lu, Bo Zhang, Zhengzhi Wu, Jing Guo","doi":"10.1109/RCAR52367.2021.9517408","DOIUrl":null,"url":null,"abstract":"Robotical hip replacement surgeries can benefit patient by precise operation and less complication. However, the robotic manipulation under master-slave mode requires operator to steer a handle for remote operation with high manipulative skill. This paper developed a virtual training system for the positioning of the acetabular cup in total hip replacements. The simulation system provides users with a master-slave mode of human-machine interaction training to assist them in accelerating their adaptation to the orthopedic surgery robot. The system can offer a security and realistic learning environment for addressing the inability to determine acetabular cup placement due to osteophytes. The user completes the mapping with the virtual surgical tool in the controller by controlling the haptic device during the training process. When the virtual tool reaches the positioning point at the correct angle, the message of distance and color shift of the point on the virtual panel indicates a successful operation. Five users experienced the system and the time taken to complete the trials showed that it helped to improve proficiency. Furthermore, the virtual simulation system can provide vivid and intuitive perception, improve the understanding of the remote manipulation.","PeriodicalId":232892,"journal":{"name":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR52367.2021.9517408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Robotical hip replacement surgeries can benefit patient by precise operation and less complication. However, the robotic manipulation under master-slave mode requires operator to steer a handle for remote operation with high manipulative skill. This paper developed a virtual training system for the positioning of the acetabular cup in total hip replacements. The simulation system provides users with a master-slave mode of human-machine interaction training to assist them in accelerating their adaptation to the orthopedic surgery robot. The system can offer a security and realistic learning environment for addressing the inability to determine acetabular cup placement due to osteophytes. The user completes the mapping with the virtual surgical tool in the controller by controlling the haptic device during the training process. When the virtual tool reaches the positioning point at the correct angle, the message of distance and color shift of the point on the virtual panel indicates a successful operation. Five users experienced the system and the time taken to complete the trials showed that it helped to improve proficiency. Furthermore, the virtual simulation system can provide vivid and intuitive perception, improve the understanding of the remote manipulation.