Heat Transfer Performance for Helium Gas Flowing in a Minichannel With Different Inner Diameters

Feng Xu, Qiusheng Liu, M. Shibahara
{"title":"Heat Transfer Performance for Helium Gas Flowing in a Minichannel With Different Inner Diameters","authors":"Feng Xu, Qiusheng Liu, M. Shibahara","doi":"10.1115/icone28-65691","DOIUrl":null,"url":null,"abstract":"\n The high heat load on the first wall of the helium cooled blanket is removed by tube flow of helium gas. Heat transfer augmentation is considered to be acquired by downsizing of channels. Therefore, this paper experimentally studied the influence of inner diameter on the heat transfer performance of helium gas flowing in a minichannel. The helium gas flowed in the small platinum tubes with the inner diameters of 0.8 mm and 1.8 mm, respectively. The heat generation rate of the tube was controlled by a heat input subsystem and raised with an exponential equation. The surface temperature and heat flux of the tubes were obtained under a wide range of e-folding time at different flow velocities. The heat transfer coefficients of different inner diameter tubes were compared at the same conditions. The heat transfer performance of the 0.8 mm-diameter tube was compared with a classical correlation. The experimental results showed that the heat transfer performance in the minichannel is better than a conventional large-diameter tube. The heat transfer coefficients of the 0.8 mm-diameter tube were higher than those of the 1.8 mm-diameter tube. The heat transfer process was enhanced with reducing the inner diameter of the minichannel. The heat transfer process was divided into two parts including transient and quasi-steady-state regions.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone28-65691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high heat load on the first wall of the helium cooled blanket is removed by tube flow of helium gas. Heat transfer augmentation is considered to be acquired by downsizing of channels. Therefore, this paper experimentally studied the influence of inner diameter on the heat transfer performance of helium gas flowing in a minichannel. The helium gas flowed in the small platinum tubes with the inner diameters of 0.8 mm and 1.8 mm, respectively. The heat generation rate of the tube was controlled by a heat input subsystem and raised with an exponential equation. The surface temperature and heat flux of the tubes were obtained under a wide range of e-folding time at different flow velocities. The heat transfer coefficients of different inner diameter tubes were compared at the same conditions. The heat transfer performance of the 0.8 mm-diameter tube was compared with a classical correlation. The experimental results showed that the heat transfer performance in the minichannel is better than a conventional large-diameter tube. The heat transfer coefficients of the 0.8 mm-diameter tube were higher than those of the 1.8 mm-diameter tube. The heat transfer process was enhanced with reducing the inner diameter of the minichannel. The heat transfer process was divided into two parts including transient and quasi-steady-state regions.
不同内径小通道内氦气的换热性能
氦气的管流消除了氦冷毯第一壁的高热负荷。热传递的增加被认为是通过缩小通道来获得的。因此,本文实验研究了内径对氦气在小通道内流动的换热性能的影响。氦气分别在内径为0.8 mm和1.8 mm的小铂管内流动。管的产热率由热输入子系统控制,用指数方程提高。得到了不同流速下不同电子折叠时间下电子管的表面温度和热流密度。比较了相同条件下不同内径管的换热系数。对直径为0.8 mm管的换热性能进行了经典相关分析。实验结果表明,小通道内的换热性能优于传统的大直径管道。0.8 mm管的换热系数高于1.8 mm管。随着小通道内径的减小,传热过程得到增强。传热过程分为瞬态和准稳态两部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信