SeGa: A Trojan Detection Method Combined With Gate Semantics

Yunying Ye, Shan Li, Haihua Shen, Huawei Li, Xiaowei Li
{"title":"SeGa: A Trojan Detection Method Combined With Gate Semantics","authors":"Yunying Ye, Shan Li, Haihua Shen, Huawei Li, Xiaowei Li","doi":"10.1109/ATS52891.2021.00020","DOIUrl":null,"url":null,"abstract":"Hardware Trojan has always been a major security threat to the integrated circuit industry. In this article, we propose a novel circuit gate embedding method called SeGa, which extracts the “semantic information” of gates in the netlist. The feature vectors that representing each type of gate extracted by SeGa are used as the inputs to the neural network classification model to detect Trojans. The experimental results on TRIT-TC benchmark show that SeGa can improve the performance of the neural network classification model to detect the Trojan gate sequence.","PeriodicalId":432330,"journal":{"name":"2021 IEEE 30th Asian Test Symposium (ATS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 30th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS52891.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hardware Trojan has always been a major security threat to the integrated circuit industry. In this article, we propose a novel circuit gate embedding method called SeGa, which extracts the “semantic information” of gates in the netlist. The feature vectors that representing each type of gate extracted by SeGa are used as the inputs to the neural network classification model to detect Trojans. The experimental results on TRIT-TC benchmark show that SeGa can improve the performance of the neural network classification model to detect the Trojan gate sequence.
SeGa:一种结合门语义的木马检测方法
硬件木马一直是集成电路行业面临的主要安全威胁。在本文中,我们提出了一种新的电路门嵌入方法,称为SeGa,它从网表中提取门的“语义信息”。将SeGa提取的代表每种门的特征向量作为神经网络分类模型的输入,用于检测木马。在TRIT-TC基准上的实验结果表明,SeGa可以提高神经网络分类模型检测特洛伊门序列的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信