Applications of data mining technique for power system transient stability prediction

X. Tao, H. Renmu, Wang Peng, Xu Dongjie
{"title":"Applications of data mining technique for power system transient stability prediction","authors":"X. Tao, H. Renmu, Wang Peng, Xu Dongjie","doi":"10.1109/DRPT.2004.1338527","DOIUrl":null,"url":null,"abstract":"This paper presents a data mining framework for the historical data of measurement and simulation units. Taking example for transient stability prediction, this paper establishes a data mining flow. The data market of transient stability is built up by all kinds of data sources. The data market is convenient for online analytical processing. At the same time, many model of data mining can be constructed based on the data market. We can acquire more knowledge of the power system transient stability. The IEEE 39-Bus test system is employed to demonstrate the validity of the proposed approach.","PeriodicalId":427228,"journal":{"name":"2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRPT.2004.1338527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a data mining framework for the historical data of measurement and simulation units. Taking example for transient stability prediction, this paper establishes a data mining flow. The data market of transient stability is built up by all kinds of data sources. The data market is convenient for online analytical processing. At the same time, many model of data mining can be constructed based on the data market. We can acquire more knowledge of the power system transient stability. The IEEE 39-Bus test system is employed to demonstrate the validity of the proposed approach.
数据挖掘技术在电力系统暂态稳定预测中的应用
提出了一种测量与仿真装置历史数据的数据挖掘框架。以暂态稳定预测为例,建立了数据挖掘流程。暂态稳定的数据市场是由各种数据源建立起来的。数据市场便于在线分析处理。同时,基于数据市场可以构建多种数据挖掘模型。我们可以获得更多关于电力系统暂态稳定的知识。采用IEEE 39总线测试系统验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信