Thermal performance of a Direct-Bond-Copper Aluminum Nitride manifold-microchannel cooler

D. Sharar, Nicholas R. Jankowski, B. Morgan
{"title":"Thermal performance of a Direct-Bond-Copper Aluminum Nitride manifold-microchannel cooler","authors":"D. Sharar, Nicholas R. Jankowski, B. Morgan","doi":"10.1109/STHERM.2010.5444313","DOIUrl":null,"url":null,"abstract":"The presence of multiple thermally resistive layers in a standard power electronics package is a hindrance to thermal dissipation. By reducing the thermal stack and incorporating microchannel cold plates into the Aluminum Nitride substrate layer, significant improvement can be made. While parallel microchannel coolers have proved their faculty for single chip cooling, manifold microchannel coolers are explored for projected thermal and fluidic advantages for multi-chip modules aimed towards Hybrid Electric vehicles. This report outlines the fabrication, testing, and experimental results for a four-chip manifold microchannel cooler with water at 25°C and 80°C and three vehicular coolant fluids at 80°C with a maximum allowable pressure drop of 5 psig. Depending on the coolant fluid used, the total thermal stack resistivities ranged from 0.316-0.628 K-cm2/W at the 5 psig pressure limit. Potential for future research and module improvement is briefly discussed.","PeriodicalId":111882,"journal":{"name":"2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2010.5444313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The presence of multiple thermally resistive layers in a standard power electronics package is a hindrance to thermal dissipation. By reducing the thermal stack and incorporating microchannel cold plates into the Aluminum Nitride substrate layer, significant improvement can be made. While parallel microchannel coolers have proved their faculty for single chip cooling, manifold microchannel coolers are explored for projected thermal and fluidic advantages for multi-chip modules aimed towards Hybrid Electric vehicles. This report outlines the fabrication, testing, and experimental results for a four-chip manifold microchannel cooler with water at 25°C and 80°C and three vehicular coolant fluids at 80°C with a maximum allowable pressure drop of 5 psig. Depending on the coolant fluid used, the total thermal stack resistivities ranged from 0.316-0.628 K-cm2/W at the 5 psig pressure limit. Potential for future research and module improvement is briefly discussed.
直接结合铜铝氮化管-微通道冷却器的热性能
在一个标准的电力电子封装中存在多个热阻层是一个热耗散的障碍。通过减少热堆并在氮化铝基板层中加入微通道冷板,可以显著改善氮化铝基板的性能。虽然并行微通道冷却器已经证明了它们在单芯片冷却方面的能力,但为了实现针对混合动力汽车的多芯片模块的预期热和流体优势,人们正在探索多种微通道冷却器。本报告概述了四芯片歧管微通道冷却器的制造,测试和实验结果,水温为25°C和80°C,三种车辆冷却液为80°C,最大允许压降为5 psig。根据所使用的冷却液,在5 psig压力极限下,总热堆电阻率范围为0.316-0.628 K-cm2/W。简要讨论了未来研究和模块改进的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信