An investigation into the fracture of silicon die used in flip chip applications

S. Popelar
{"title":"An investigation into the fracture of silicon die used in flip chip applications","authors":"S. Popelar","doi":"10.1109/ISAPM.1998.664431","DOIUrl":null,"url":null,"abstract":"In this investigation, the fracture strength of silicon has been measured as a function of die thickness, crystal orientation and die surface treatment using a four-point bend test method. The influence of minute surface flaws or divots generated from a die singulation process has also been quantified. The amount of silicon surface damage sustained in typical IC post-fabrication processes is then estimated using a simplified fracture mechanics approach. Results show that fracture strength does not depend on crystal orientation or thickness, but that it is highly dependent on the amount of surface damage present. In addition to the fracture strength measurements, finite element models have been employed to predict the amount of stress generated in a flip chip die for a given design. A parametric study has been performed to look at the influence of die thickness, substrate thickness and underfill properties (elastic modulus and coefficient of thermal expansion) on maximum die stress. Results show that the level of stress in die assembled to organic substrates is much greater than in die assembled to ceramic substrates. Stress levels determined from the finite element models are then compared to the silicon fracture strength for a given backside treatment in order to predict the likelihood of fracture.","PeriodicalId":354229,"journal":{"name":"Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.1998.664431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

In this investigation, the fracture strength of silicon has been measured as a function of die thickness, crystal orientation and die surface treatment using a four-point bend test method. The influence of minute surface flaws or divots generated from a die singulation process has also been quantified. The amount of silicon surface damage sustained in typical IC post-fabrication processes is then estimated using a simplified fracture mechanics approach. Results show that fracture strength does not depend on crystal orientation or thickness, but that it is highly dependent on the amount of surface damage present. In addition to the fracture strength measurements, finite element models have been employed to predict the amount of stress generated in a flip chip die for a given design. A parametric study has been performed to look at the influence of die thickness, substrate thickness and underfill properties (elastic modulus and coefficient of thermal expansion) on maximum die stress. Results show that the level of stress in die assembled to organic substrates is much greater than in die assembled to ceramic substrates. Stress levels determined from the finite element models are then compared to the silicon fracture strength for a given backside treatment in order to predict the likelihood of fracture.
倒装芯片中硅模断裂的研究
在本研究中,采用四点弯曲试验方法测量了硅的断裂强度作为模具厚度、晶体取向和模具表面处理的函数。模具模拟过程中产生的微小表面缺陷或剥落的影响也被量化。然后使用简化的断裂力学方法估计典型集成电路后制程中硅表面的损伤量。结果表明,断裂强度不依赖于晶体取向或厚度,而高度依赖于表面损伤的大小。除了断裂强度测量外,还采用有限元模型来预测给定设计的倒装芯片中产生的应力量。进行了一项参数化研究,以观察模具厚度、衬底厚度和下填料特性(弹性模量和热膨胀系数)对最大模具应力的影响。结果表明,在有机基板上组装的模具的应力水平远大于在陶瓷基板上组装的模具。然后将由有限元模型确定的应力水平与给定背面处理的硅断裂强度进行比较,以预测断裂的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信