Timo Korthals, Daniel Wolf, Daniel Rudolph, Marc Hesse, U. Rückert
{"title":"Fiducial Marker based Extrinsic Camera Calibration for a Robot Benchmarking Platform","authors":"Timo Korthals, Daniel Wolf, Daniel Rudolph, Marc Hesse, U. Rückert","doi":"10.1109/ECMR.2019.8870969","DOIUrl":null,"url":null,"abstract":"Evaluation of robotic experiments requires physical robots as well as position sensing systems. Accurate systems detecting sufficiently all necessary degrees of freedom, like the famous Vicon system, are commonly too expensive. Therefore, we target an economical multi-camera based solution by following these three requirements: Using multiple cameras to track even large laboratory areas, applying fiducial marker trackers for pose identification, and fuse tracking hypothesis resulting from multiple cameras via extended Kalman filter (i.e. ROS's robot_localization). While the registration of a multi-camera system for collaborative tracking remains a challenging issue, the contribution of this paper is as follows: We introduce the framework of Cognitive Interaction Tracking (CITrack). Then, common fiducial marker tracking systems (ARToolKit, April-Tag, ArUco) are compared with respect to their maintainability. Lastly, a graph-based camera registration approach in SE(3), using the fiducial marker tracking in a multi-camera setup, is presented and evaluated.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Evaluation of robotic experiments requires physical robots as well as position sensing systems. Accurate systems detecting sufficiently all necessary degrees of freedom, like the famous Vicon system, are commonly too expensive. Therefore, we target an economical multi-camera based solution by following these three requirements: Using multiple cameras to track even large laboratory areas, applying fiducial marker trackers for pose identification, and fuse tracking hypothesis resulting from multiple cameras via extended Kalman filter (i.e. ROS's robot_localization). While the registration of a multi-camera system for collaborative tracking remains a challenging issue, the contribution of this paper is as follows: We introduce the framework of Cognitive Interaction Tracking (CITrack). Then, common fiducial marker tracking systems (ARToolKit, April-Tag, ArUco) are compared with respect to their maintainability. Lastly, a graph-based camera registration approach in SE(3), using the fiducial marker tracking in a multi-camera setup, is presented and evaluated.