Detecting major disease in public hospital using ensemble techniques

Mgs. Afriyan Firdaus, Rin Nadia, Bayu Adhi Tama
{"title":"Detecting major disease in public hospital using ensemble techniques","authors":"Mgs. Afriyan Firdaus, Rin Nadia, Bayu Adhi Tama","doi":"10.1109/ISTMET.2014.6936496","DOIUrl":null,"url":null,"abstract":"Hepatitis is chronic disease that becomes major problem in developing countries. Health experts estimate that more than 185 billion people have chronic hepatitis worldwide. This paper attempts to detect major disease such as hepatitis in public hospital using ensemble methods. Several ensemble techniques were applied to acquire knowledge from patient medical records. Afterwards, rule extraction from decision tree and neural network are summarized in order to assist experts in detecting hepatitis. Accuracy of those algorithms is also performed and from the experimental result shows that Bagging, with decision tree as base-classifier, denotes best performance among other classifiers.","PeriodicalId":364834,"journal":{"name":"2014 International Symposium on Technology Management and Emerging Technologies","volume":"466 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Technology Management and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTMET.2014.6936496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Hepatitis is chronic disease that becomes major problem in developing countries. Health experts estimate that more than 185 billion people have chronic hepatitis worldwide. This paper attempts to detect major disease such as hepatitis in public hospital using ensemble methods. Several ensemble techniques were applied to acquire knowledge from patient medical records. Afterwards, rule extraction from decision tree and neural network are summarized in order to assist experts in detecting hepatitis. Accuracy of those algorithms is also performed and from the experimental result shows that Bagging, with decision tree as base-classifier, denotes best performance among other classifiers.
应用集成技术检测公立医院重大疾病
肝炎是一种慢性疾病,已成为发展中国家的主要问题。卫生专家估计,全世界有超过1850亿人患有慢性肝炎。本文尝试用集成方法对公立医院肝炎等重大疾病进行检测。应用了几种集成技术从患者病历中获取知识。然后总结了基于决策树和神经网络的规则提取方法,以辅助专家检测肝炎。实验结果表明,以决策树为基本分类器的Bagging分类器在其他分类器中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信