K. Lee, Shuyu Bao, G. Y. Chong, Yew Heng Tan, E. Fitzgerald, C. S. Tan
{"title":"Fabrication of germanium-on-insulator (GOI) with improved threading dislocation density (TDD) via buffer-less epitaxy and bonding","authors":"K. Lee, Shuyu Bao, G. Y. Chong, Yew Heng Tan, E. Fitzgerald, C. S. Tan","doi":"10.1109/ISTDM.2014.6874660","DOIUrl":null,"url":null,"abstract":"The GOI substrate is fabricated through buffer-less epitaxy (the growth of Ge on Si), bonding and layer transfer. The misfit dislocations which are previously “buried” along the Ge/Si interface are now accessible from the top surface. Through TDD reduction method, the TDD is reduced by at least two orders of magnitude. Hence, a Ge epilayer with lower TDD can be realized and useful for subsequent III-V integration and device fabrication.","PeriodicalId":371483,"journal":{"name":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTDM.2014.6874660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The GOI substrate is fabricated through buffer-less epitaxy (the growth of Ge on Si), bonding and layer transfer. The misfit dislocations which are previously “buried” along the Ge/Si interface are now accessible from the top surface. Through TDD reduction method, the TDD is reduced by at least two orders of magnitude. Hence, a Ge epilayer with lower TDD can be realized and useful for subsequent III-V integration and device fabrication.