Automatic In-Memory Fuzzing with the Assistance of Taint Flow Analysis

Gang Yang, Chao Feng, Xing Zhang, Chaojing Tang
{"title":"Automatic In-Memory Fuzzing with the Assistance of Taint Flow Analysis","authors":"Gang Yang, Chao Feng, Xing Zhang, Chaojing Tang","doi":"10.1109/ICNISC.2017.00047","DOIUrl":null,"url":null,"abstract":"In-memory fuzzing is a research hotspot in the field of vulnerability mining in recent years, due to the high efficiency and lightweight. However its incompleteness, poor robustness, and low automation, make in-memory fuzzing difficult to be applied in the actual vulnerability discovering. In this paper, we combine the taint analysis with in-memory fuzzing, to solve the above problems. And the experiments show that our method can improve the level of automation and robustness, reduce incompleteness effectively.","PeriodicalId":429511,"journal":{"name":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC.2017.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In-memory fuzzing is a research hotspot in the field of vulnerability mining in recent years, due to the high efficiency and lightweight. However its incompleteness, poor robustness, and low automation, make in-memory fuzzing difficult to be applied in the actual vulnerability discovering. In this paper, we combine the taint analysis with in-memory fuzzing, to solve the above problems. And the experiments show that our method can improve the level of automation and robustness, reduce incompleteness effectively.
基于污点流分析的自动内存模糊测试
内存模糊以其高效、轻量级的特点成为近年来漏洞挖掘领域的研究热点。但是由于内存模糊的不完备性、鲁棒性差、自动化程度低,使得其难以应用于实际的漏洞发现中。在本文中,我们将污染分析与内存模糊相结合来解决上述问题。实验结果表明,该方法能有效地提高自动化程度和鲁棒性,减少不完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信