Subspace-based estimation of time of arrival and Doppler shift for a signal of known waveform

V. Latyshev
{"title":"Subspace-based estimation of time of arrival and Doppler shift for a signal of known waveform","authors":"V. Latyshev","doi":"10.1017/S175907870900021X","DOIUrl":null,"url":null,"abstract":"The subspace-based technique is used for the estimation of the time of arrival and Doppler shift of a signal of the known waveform. The tool to find required subspaces is a special orthogonal decomposition of received data. It allows concentrate Fisher information about desired parameter in a small number of the first terms of the decomposition. This approach offers a low-dimensional vector of sufficient statistics. It leads to computationally efficient Bayes estimation. Besides, it results in expanding of the SNR range for effective ML-estimating. At last, we can obtain independent time arrival and Doppler shift estimations on the base generalized eigenvectors of the matrix pair.","PeriodicalId":113942,"journal":{"name":"2008 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S175907870900021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The subspace-based technique is used for the estimation of the time of arrival and Doppler shift of a signal of the known waveform. The tool to find required subspaces is a special orthogonal decomposition of received data. It allows concentrate Fisher information about desired parameter in a small number of the first terms of the decomposition. This approach offers a low-dimensional vector of sufficient statistics. It leads to computationally efficient Bayes estimation. Besides, it results in expanding of the SNR range for effective ML-estimating. At last, we can obtain independent time arrival and Doppler shift estimations on the base generalized eigenvectors of the matrix pair.
已知波形信号的到达时间和多普勒频移的子空间估计
基于子空间的技术用于估计已知波形信号的到达时间和多普勒频移。找到所需子空间的工具是对接收到的数据进行特殊的正交分解。它允许在分解的少量第一项中集中关于所需参数的费雪信息。这种方法提供了一个具有足够统计量的低维向量。它导致计算效率高的贝叶斯估计。此外,它还扩大了有效的机器学习估计的信噪比范围。最后,在矩阵对的基本广义特征向量上得到独立的时间到达估计和多普勒频移估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信