EEG-signals based cognitive workload detection of vehicle driver using deep learning

Mohammad A. Almogbel, Anh H. Dang, W. Kameyama
{"title":"EEG-signals based cognitive workload detection of vehicle driver using deep learning","authors":"Mohammad A. Almogbel, Anh H. Dang, W. Kameyama","doi":"10.23919/ICACT.2018.8323716","DOIUrl":null,"url":null,"abstract":"Vehicle driver's ability to maintain optimal performance and attention is essential to ensure the safety of the traffic. Electroencephalography (EEG) signals have been proven to be effective in evaluating human's cognitive state under specific tasks. In this paper, we propose the use of deep learning on EEG signals to detect the driver's cognitive workload under high and low workload tasks. Data used in this research are collected throughout multiple driving sessions conducted on a high fidelity driving simulator. Preliminary experimental results conducted on only 4 channels of EEG show that the proposed system is capable of accurately detecting the cognitive workload of the driver with an enormous potential for improvement.","PeriodicalId":228625,"journal":{"name":"2018 20th International Conference on Advanced Communication Technology (ICACT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2018.8323716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Vehicle driver's ability to maintain optimal performance and attention is essential to ensure the safety of the traffic. Electroencephalography (EEG) signals have been proven to be effective in evaluating human's cognitive state under specific tasks. In this paper, we propose the use of deep learning on EEG signals to detect the driver's cognitive workload under high and low workload tasks. Data used in this research are collected throughout multiple driving sessions conducted on a high fidelity driving simulator. Preliminary experimental results conducted on only 4 channels of EEG show that the proposed system is capable of accurately detecting the cognitive workload of the driver with an enormous potential for improvement.
基于脑电图信号的深度学习车辆驾驶员认知负荷检测
车辆驾驶员保持最佳状态和注意力的能力对确保交通安全至关重要。脑电图(EEG)信号已被证明是评估人类在特定任务下的认知状态的有效方法。在本文中,我们提出利用脑电信号的深度学习来检测驾驶员在高负荷和低负荷任务下的认知负荷。本研究中使用的数据是在高保真驾驶模拟器上进行的多次驾驶过程中收集的。仅在4个脑电通道上进行的初步实验结果表明,该系统能够准确地检测驾驶员的认知负荷,并且具有巨大的改进潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信