Genetic Algorithm for optimizing cutting conditions of uncoated carbide (WC-Co) in milling machining operation

A. Zain, H. Haron, S. Sharif
{"title":"Genetic Algorithm for optimizing cutting conditions of uncoated carbide (WC-Co) in milling machining operation","authors":"A. Zain, H. Haron, S. Sharif","doi":"10.1109/CITISIA.2009.5224209","DOIUrl":null,"url":null,"abstract":"This paper presents the capability of Genetic Algorithm (GA) technique in obtaining the optimal machining parameters for uncoated carbide (WC-Co) tool to minimize the surface roughness (Ra) value in milling process. The optimal machining parameters are generated using MATLAB Optimization toolbox. Regression technique is applied to create the surface roughness predicted equation to be taken as a fitness function of the GA. Result of this study indicated that the GA technique capable to estimate the optimal cutting conditions that yields to the minimum Ra value. With high speed, low feed and high radial rake angle of the cutting conditions rate, GA technique recommended 0.17533µm as the best minimum predicted surface roughness value. Consequently, the GA technique has decreased the minimum surface roughness value of the experimental data by about 25.7 %.","PeriodicalId":144722,"journal":{"name":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA.2009.5224209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the capability of Genetic Algorithm (GA) technique in obtaining the optimal machining parameters for uncoated carbide (WC-Co) tool to minimize the surface roughness (Ra) value in milling process. The optimal machining parameters are generated using MATLAB Optimization toolbox. Regression technique is applied to create the surface roughness predicted equation to be taken as a fitness function of the GA. Result of this study indicated that the GA technique capable to estimate the optimal cutting conditions that yields to the minimum Ra value. With high speed, low feed and high radial rake angle of the cutting conditions rate, GA technique recommended 0.17533µm as the best minimum predicted surface roughness value. Consequently, the GA technique has decreased the minimum surface roughness value of the experimental data by about 25.7 %.
未涂层硬质合金铣削加工条件优化的遗传算法
介绍了遗传算法(GA)技术在无涂层硬质合金(WC-Co)刀具铣削过程中获取最优加工参数以使表面粗糙度(Ra)值最小的能力。利用MATLAB优化工具箱生成最优加工参数。采用回归技术建立表面粗糙度预测方程,并将其作为遗传算法的适应度函数。研究结果表明,遗传算法能够估计出产生最小Ra值的最佳切削条件。在高速、小进给量和大径向前角切削条件速率下,遗传算法推荐的最佳最小表面粗糙度预测值为0.17533µm。因此,遗传算法使实验数据的最小表面粗糙度值降低了约25.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信