Atomic scale engineering of metal-oxide-semiconductor photoelectrodes for energy harvesting application integrated with Graphene and Epitaxy SrTiO3

L. Ji, Martin D. McDaniel, L. Tao, Xiaohang Li, A. Posadas, Yao‐Feng Chang, A. Demkov, J. Ekerdt, D. Akinwande, R. Ruoff, Jack C. Lee, E. Yu
{"title":"Atomic scale engineering of metal-oxide-semiconductor photoelectrodes for energy harvesting application integrated with Graphene and Epitaxy SrTiO3","authors":"L. Ji, Martin D. McDaniel, L. Tao, Xiaohang Li, A. Posadas, Yao‐Feng Chang, A. Demkov, J. Ekerdt, D. Akinwande, R. Ruoff, Jack C. Lee, E. Yu","doi":"10.1109/IEDM.2014.7047013","DOIUrl":null,"url":null,"abstract":"In this work, hydrogen production from water is demonstrated via a p-type silicon photocathode with a thin epitaxial strontium titanate, SrTiO3 (STO), as capping layer by molecular beam epitaxy. The advantages of using STO are the ideal conduction band alignment and perfect lattice match between single crystalline SrTiO3 and Si, so the photogenerated electrons can transport through the capping layer with a reduced recombination rate. The STO/p-Si photocathode exhibited a maximum photocurrent density and open circuit potential of 35 mA/cm2 and 450 mV, respectively. There was no observable decrease in performance after 10 hr operation in 0.5M H2SO4. We found the efficiency and performance were highly dependent on the size and spacing of the structured metal catalyst. Scaled down the metal catalysts feature size into nanometer region can greatly improve the efficiency. In addition, samples with graphene (Grahene/p-Si) as the lateral transport channel and capping layer shown an enhanced fill factor compared with that of STO/p-Si.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, hydrogen production from water is demonstrated via a p-type silicon photocathode with a thin epitaxial strontium titanate, SrTiO3 (STO), as capping layer by molecular beam epitaxy. The advantages of using STO are the ideal conduction band alignment and perfect lattice match between single crystalline SrTiO3 and Si, so the photogenerated electrons can transport through the capping layer with a reduced recombination rate. The STO/p-Si photocathode exhibited a maximum photocurrent density and open circuit potential of 35 mA/cm2 and 450 mV, respectively. There was no observable decrease in performance after 10 hr operation in 0.5M H2SO4. We found the efficiency and performance were highly dependent on the size and spacing of the structured metal catalyst. Scaled down the metal catalysts feature size into nanometer region can greatly improve the efficiency. In addition, samples with graphene (Grahene/p-Si) as the lateral transport channel and capping layer shown an enhanced fill factor compared with that of STO/p-Si.
集成石墨烯和外延SrTiO3的能量收集应用的金属氧化物半导体光电极的原子尺度工程
在这项工作中,通过分子束外延的薄外延钛酸锶SrTiO3 (STO)作为封盖层,通过p型硅光电阴极证明了水产氢。使用STO的优点是单晶SrTiO3和Si之间具有理想的导带对准和完美的晶格匹配,因此光生电子可以以较低的复合率通过封盖层传输。STO/p-Si光电阴极的最大光电流密度和开路电位分别为35 mA/cm2和450 mV。在0.5M H2SO4中运行10小时后,性能没有明显下降。我们发现效率和性能高度依赖于结构金属催化剂的尺寸和间距。将金属催化剂的特征尺寸缩小到纳米级可以大大提高效率。此外,与STO/p-Si相比,石墨烯(Grahene/p-Si)作为横向传输通道和封盖层的样品显示出更高的填充因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信