A Robust Calibration Method for the Underwater Transponder Position Based on Gauss-Newton Iteration Algorithm

Liang Zhang, Tao Zhang
{"title":"A Robust Calibration Method for the Underwater Transponder Position Based on Gauss-Newton Iteration Algorithm","authors":"Liang Zhang, Tao Zhang","doi":"10.1109/ICCMA46720.2019.8988740","DOIUrl":null,"url":null,"abstract":"The ultra-short baseline(USBL) is widely used in ships and underwater navigation and positioning. An accurate transponder position is critical for the ultra-short baseline positioning systems. However, in a complex underwater environment, the performance of the traditional calibration method is poor in the presence of outliers. Thus, a robust Gauss-Newton iteration algorithm is proposed for the calibration of the transponder position by the paper. The outliers can be detected by the improved Badar data snooping. The simulation and field experiment verified that the calibration accuracy of the transponder position is higher with the proposed method in the presence of outliers. Because of the more accurate transponder position, the positioning accuracy of the USBL can be further improved compared to the traditional methods.","PeriodicalId":377212,"journal":{"name":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA46720.2019.8988740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The ultra-short baseline(USBL) is widely used in ships and underwater navigation and positioning. An accurate transponder position is critical for the ultra-short baseline positioning systems. However, in a complex underwater environment, the performance of the traditional calibration method is poor in the presence of outliers. Thus, a robust Gauss-Newton iteration algorithm is proposed for the calibration of the transponder position by the paper. The outliers can be detected by the improved Badar data snooping. The simulation and field experiment verified that the calibration accuracy of the transponder position is higher with the proposed method in the presence of outliers. Because of the more accurate transponder position, the positioning accuracy of the USBL can be further improved compared to the traditional methods.
基于高斯-牛顿迭代算法的水下应答器位置鲁棒标定方法
超短基线(USBL)广泛应用于船舶和水下导航定位。准确的应答器位置对超短基线定位系统至关重要。然而,在复杂的水下环境中,在异常值存在的情况下,传统的标定方法的性能较差。因此,本文提出了一种鲁棒的高斯-牛顿迭代算法来标定应答器的位置。通过改进的Badar数据窥探可以检测到异常值。仿真和现场实验验证了该方法在存在离群点的情况下具有较高的应答器位置标定精度。由于应答器位置更加精确,与传统方法相比,USBL的定位精度可以进一步提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信