UAV Autonomous Indoor Exploration and Mapping for SAR Missions: Reflections from the ICUAS 2022 Competition

A. Farooq, Antreas Anastasiou, N. Souli, C. Laoudias, P. Kolios, T. Theocharides
{"title":"UAV Autonomous Indoor Exploration and Mapping for SAR Missions: Reflections from the ICUAS 2022 Competition","authors":"A. Farooq, Antreas Anastasiou, N. Souli, C. Laoudias, P. Kolios, T. Theocharides","doi":"10.1109/UR55393.2022.9866527","DOIUrl":null,"url":null,"abstract":"The technological advancement in Unmanned Aerial Vehicles (UAVs) or drones and their deployment in real-life Search and Rescue (SAR) missions is imminent. We, therefore, present a perception-aware autonomous exploration framework aimed at performing vision-based target detection and collision avoidance with an Unmanned Aerial Vehicle (UAV). The UAV utilizes a depth camera for maneuvering and finding the target. The underlying indoor exploration approach considers autonomous collision-free navigation, as well as target detection with a ballistic ball payload delivery without a prior map. Moreover, the proposed method allows safe navigation in enclosed unknown areas congested with randomly positioned obstacles and target locations. Our underlined end-to-end system architecture integrates the proposed exploration strategy. Extensive simulation experiments, using several Key Performance Indicators (KPIs), showcase the effectiveness of the proposed Robot Operating System (ROS) framework in a simulated Gazebo environment under various parameter settings.","PeriodicalId":398742,"journal":{"name":"2022 19th International Conference on Ubiquitous Robots (UR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR55393.2022.9866527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The technological advancement in Unmanned Aerial Vehicles (UAVs) or drones and their deployment in real-life Search and Rescue (SAR) missions is imminent. We, therefore, present a perception-aware autonomous exploration framework aimed at performing vision-based target detection and collision avoidance with an Unmanned Aerial Vehicle (UAV). The UAV utilizes a depth camera for maneuvering and finding the target. The underlying indoor exploration approach considers autonomous collision-free navigation, as well as target detection with a ballistic ball payload delivery without a prior map. Moreover, the proposed method allows safe navigation in enclosed unknown areas congested with randomly positioned obstacles and target locations. Our underlined end-to-end system architecture integrates the proposed exploration strategy. Extensive simulation experiments, using several Key Performance Indicators (KPIs), showcase the effectiveness of the proposed Robot Operating System (ROS) framework in a simulated Gazebo environment under various parameter settings.
面向SAR任务的无人机自主室内探测与制图:来自ICUAS 2022竞赛的思考
无人驾驶飞行器(uav)或无人机的技术进步及其在现实生活中的搜索和救援(SAR)任务中的部署迫在眉睫。因此,我们提出了一种感知感知自主探索框架,旨在与无人机(UAV)进行基于视觉的目标检测和避碰。UAV使用一个深度照相机用于机动和寻找目标。潜在的室内探测方法考虑了自主无碰撞导航,以及在没有事先地图的情况下使用弹道球有效载荷进行目标检测。此外,该方法还可以在障碍物和目标位置随机分布的封闭未知区域中实现安全导航。我们强调的端到端系统架构集成了提出的勘探策略。大量的仿真实验,使用几个关键性能指标(kpi),展示了机器人操作系统(ROS)框架在模拟Gazebo环境中在各种参数设置下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信