{"title":"Modeling Time of Use Pricing for Load Aggregators Using New Mathematical Programming with Equality Constraints","authors":"Saeed Ahmadian, H. Malki, A. Sadat","doi":"10.1109/CoDIT.2018.8394778","DOIUrl":null,"url":null,"abstract":"Demand Response (DR) and Time of Use (TOU) pricing for retail electricity market is the key to reduce total system costs in smart grids. In this paper, a bi-level optimization model for the time of use pricing problem is presented. The interactions between electricity Load Aggregators (LAs) and end-users in the smart grid is applied to obtain optimal TOU in the retail market. For the LAs, there is a revenue maximization problem (upper level), and for end-users there is a cost minimization problem (lower level). The proposed method defines a novel concept of the Retail Market Clearing Price (RMCP) by modeling DR at the lower level. It is proven that at the demand side, there is a unique marginal cost price, which will fulfill the end-user cost minimization problem. The proposed algorithm defines adequate TOU mechanism by presenting mathematical model of end-users response to electricity prices. To solve the lower level problem, a new Mixed Integer Linear Programming (MILP) problem is presented, which uses the Karush-Kuhn-Tucker (KKT) conditions and Mathematical Programming with Equality Constraints (MPEC). To validate the proposed model, three different competitive LAs were considered.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Demand Response (DR) and Time of Use (TOU) pricing for retail electricity market is the key to reduce total system costs in smart grids. In this paper, a bi-level optimization model for the time of use pricing problem is presented. The interactions between electricity Load Aggregators (LAs) and end-users in the smart grid is applied to obtain optimal TOU in the retail market. For the LAs, there is a revenue maximization problem (upper level), and for end-users there is a cost minimization problem (lower level). The proposed method defines a novel concept of the Retail Market Clearing Price (RMCP) by modeling DR at the lower level. It is proven that at the demand side, there is a unique marginal cost price, which will fulfill the end-user cost minimization problem. The proposed algorithm defines adequate TOU mechanism by presenting mathematical model of end-users response to electricity prices. To solve the lower level problem, a new Mixed Integer Linear Programming (MILP) problem is presented, which uses the Karush-Kuhn-Tucker (KKT) conditions and Mathematical Programming with Equality Constraints (MPEC). To validate the proposed model, three different competitive LAs were considered.