Multinomial Naïve Bayes Classifier: Bayesian versus Nonparametric Classifier Approach

R. O. Olanrewaju, S. A. Olanrewaju, L. Nafiu
{"title":"Multinomial Naïve Bayes Classifier: Bayesian versus Nonparametric Classifier Approach","authors":"R. O. Olanrewaju, S. A. Olanrewaju, L. Nafiu","doi":"10.28924/ada/stat.2.8","DOIUrl":null,"url":null,"abstract":"This paper proposes a Naïve Bayes Classifier for Bayesian and nonparametric methods of analyzing multinomial regression. The Naïve Bayes classifier adopted Bayes’ rule for solving the posterior of the multinomial regression via its link function known as Logit link. The nonparametric adopted Gaussian, bi-weight kernels, Silverman’s rule of thumb bandwidth selector, and adjusted bandwidth as kernel density estimation. Three categorical responses of information on 78 people using one of three diets (Diet A, B, and C) that consist of scaled variables: age (in years), height (in cm), weight (in kg) before the diet (that is, pre-weight), weight (in kg) gained after 6 weeks of diet were subjected to the classifier multinomial regression of Naïve Bayes and nonparametric. The Gaussian and bi-weight kernel density estimation produced the minimum bandwidths across the three categorical responses for the four influencers. The Naïve Bayes classifier and nonparametric kernel density estimation for the multinomial regression produced the same prior probabilities of 0.3077, 0.3462, and 0.3462; and A prior probabilities of 0.3077, 0.3462, and 0.3462 for Diet A, Diet B, and Diet C at different smoothing bandwidths.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a Naïve Bayes Classifier for Bayesian and nonparametric methods of analyzing multinomial regression. The Naïve Bayes classifier adopted Bayes’ rule for solving the posterior of the multinomial regression via its link function known as Logit link. The nonparametric adopted Gaussian, bi-weight kernels, Silverman’s rule of thumb bandwidth selector, and adjusted bandwidth as kernel density estimation. Three categorical responses of information on 78 people using one of three diets (Diet A, B, and C) that consist of scaled variables: age (in years), height (in cm), weight (in kg) before the diet (that is, pre-weight), weight (in kg) gained after 6 weeks of diet were subjected to the classifier multinomial regression of Naïve Bayes and nonparametric. The Gaussian and bi-weight kernel density estimation produced the minimum bandwidths across the three categorical responses for the four influencers. The Naïve Bayes classifier and nonparametric kernel density estimation for the multinomial regression produced the same prior probabilities of 0.3077, 0.3462, and 0.3462; and A prior probabilities of 0.3077, 0.3462, and 0.3462 for Diet A, Diet B, and Diet C at different smoothing bandwidths.
多项Naïve贝叶斯分类器:贝叶斯与非参数分类器方法
本文提出了一种Naïve贝叶斯分类器,用于贝叶斯和非参数方法分析多项回归。Naïve贝叶斯分类器采用贝叶斯规则,通过Logit链接函数求解多项回归的后验。非参数核密度估计采用高斯、双权核、Silverman带宽选择法则和调整后的带宽作为核密度估计。使用三种饮食(饮食A, B和C)中的一种的78人的信息的三个分类反应由缩放变量组成:年龄(年),身高(厘米),饮食前体重(公斤)(即前体重),6周饮食后体重(公斤)增加Naïve贝叶斯和非参数分类器多项式回归。高斯和双权核密度估计在四个影响者的三个分类响应中产生最小带宽。Naïve贝叶斯分类器和非参数核密度估计对多项回归产生相同的先验概率分别为0.3077、0.3462和0.3462;A、B和C在不同平滑带宽下的先验概率分别为0.3077、0.3462和0.3462。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信