{"title":"High Performance and Low Power Monte Carlo Methods to Option Pricing Models via High Level Design and Synthesis","authors":"Liang Ma, F. Muslim, L. Lavagno","doi":"10.1109/EMS.2016.036","DOIUrl":null,"url":null,"abstract":"This article compares the performance and energy consumption of GPUs and FPGAs via implementing financial market models. The case studies used in this comparison are the Black-Scholes model and the Heston model for option pricing problems, which are analyzed numerically by Monte Carlo method. The algorithms are computationally intensive but not memory-intensive and thus well suited for FPGA implementation. High-level synthesis was performed starting from parallel models written in OpenCL and then various micro-architectures were explored and optimized on FPGAs. The final implementations of both models to several options on FPGAs achieved the best parallel acceleration systems, in terms of both performance-per-operation and energy-per-operation, compared not only to the kernels on advanced GPUs but also to the RTL implementations found in the literatures.","PeriodicalId":446936,"journal":{"name":"2016 European Modelling Symposium (EMS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 European Modelling Symposium (EMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2016.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This article compares the performance and energy consumption of GPUs and FPGAs via implementing financial market models. The case studies used in this comparison are the Black-Scholes model and the Heston model for option pricing problems, which are analyzed numerically by Monte Carlo method. The algorithms are computationally intensive but not memory-intensive and thus well suited for FPGA implementation. High-level synthesis was performed starting from parallel models written in OpenCL and then various micro-architectures were explored and optimized on FPGAs. The final implementations of both models to several options on FPGAs achieved the best parallel acceleration systems, in terms of both performance-per-operation and energy-per-operation, compared not only to the kernels on advanced GPUs but also to the RTL implementations found in the literatures.