Fully Convolutional Network based on Contrast Information Integration for Dermoscopic Image Segmentation

Shuyuan Chen, Chaojie Ji, Ruxin Wang, Hongyan Wu
{"title":"Fully Convolutional Network based on Contrast Information Integration for Dermoscopic Image Segmentation","authors":"Shuyuan Chen, Chaojie Ji, Ruxin Wang, Hongyan Wu","doi":"10.1145/3395260.3395284","DOIUrl":null,"url":null,"abstract":"Melanoma is one of the most common human lethal cancers. Because the lesions have different shapes, sizes, colors, and low contrast, extracting powerful features for fine-grained skin lesion segmentation is still a challenging task today. In this paper, we propose a novel fully convolutional network based on contrast information integration for skin lesion segmentation, which effectively utilizes contrast information from each convolutional block in our network framework. Compared with existing skin lesion segmentation approaches, a new integration module is designed by combining the contrast information for extracting richer feature representation. Finally, we evaluate our method on the public ISIC 2017 challenge dataset and obtain the outstanding performance with the Jaccard Index (JA) of 79.9%, which is higher than other state-of-the-art methods for skin lesion segmentation.","PeriodicalId":103490,"journal":{"name":"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395260.3395284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Melanoma is one of the most common human lethal cancers. Because the lesions have different shapes, sizes, colors, and low contrast, extracting powerful features for fine-grained skin lesion segmentation is still a challenging task today. In this paper, we propose a novel fully convolutional network based on contrast information integration for skin lesion segmentation, which effectively utilizes contrast information from each convolutional block in our network framework. Compared with existing skin lesion segmentation approaches, a new integration module is designed by combining the contrast information for extracting richer feature representation. Finally, we evaluate our method on the public ISIC 2017 challenge dataset and obtain the outstanding performance with the Jaccard Index (JA) of 79.9%, which is higher than other state-of-the-art methods for skin lesion segmentation.
基于对比度信息集成的全卷积网络皮肤镜图像分割
黑色素瘤是人类最常见的致命癌症之一。由于病变具有不同的形状、大小、颜色和低对比度,提取强大的特征以进行细粒度皮肤病变分割仍然是一项具有挑战性的任务。在本文中,我们提出了一种基于对比度信息集成的全卷积网络用于皮肤病变分割,该网络在我们的网络框架中有效地利用了每个卷积块的对比度信息。与现有的皮肤病变分割方法相比,结合对比信息设计了新的集成模块,提取更丰富的特征表示。最后,我们在ISIC 2017公开挑战数据集上对我们的方法进行了评估,获得了出色的性能,Jaccard指数(JA)为79.9%,高于其他最先进的皮肤病变分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信