Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80

Gangqiang Yang, Zhengyuan Shi, Cheng Chen, Hailiang Xiong, Honggang Hu, Zhiguo Wan, Keke Gai, Meikang Qiu
{"title":"Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80","authors":"Gangqiang Yang, Zhengyuan Shi, Cheng Chen, Hailiang Xiong, Honggang Hu, Zhiguo Wan, Keke Gai, Meikang Qiu","doi":"10.1109/CASES55004.2022.00016","DOIUrl":null,"url":null,"abstract":"Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.","PeriodicalId":331181,"journal":{"name":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASES55004.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
正在进行的工作:迈向小于颗粒的流密码:Fruit-80的优化FPGA实现
Fruit-80是面向物联网中资源受限设备的80位密钥超轻量级流密码。本文提出了Fruit-80在fpga上的面积和速度优化架构。面积优化架构重用了NFSR&LFSR反馈函数,实现了最合适的查表和触发器比例。速度优化体系结构采用混合并行化方法,通过预生成主反馈和插入触发器来减少长数据路径的延迟。综上所述,速度优化架构的最优吞吐量面积比优于Grain v1。该面积优化架构在Xilinx Spartan-3 FPGA上仅占用35片,比Grain等常用流密码要小。据我们所知,这一结果创下了FPGA上轻量级密码实现中最小面积的新记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信