Text Classification for Sentiment Prediction of Social Media Dataset using Multichannel Convolution Neural Network

D. Munandar, Andria Arisal, D. Riswantini, A. Rozie
{"title":"Text Classification for Sentiment Prediction of Social Media Dataset using Multichannel Convolution Neural Network","authors":"D. Munandar, Andria Arisal, D. Riswantini, A. Rozie","doi":"10.1109/IC3INA.2018.8629522","DOIUrl":null,"url":null,"abstract":"Text classification of social media documents requires a specified model for a particular dataset. We investigated the public opinion and sentiment from Indonesian twitter toward the employment problem. To predict the sentiment about this topic, we collected a total of 75,126 tweets which correlate with employment conversation for the training and testing process. We analyzed the collected tweets by applying convolution neural networks (CNN) model which expanded from the standard one-dimensional deep learning model to a multichannel model. Applying multiple parallel CNN processes, the documents were processed using different CNN topologies by varying word embedding dimension, kernel size, number of hidden layers or nodes, and also different n-grams. Experiment results with three-dimension channel have 0.0172 loss error and 0.9917 accuracy. CNN model with multichannel configuration provides maximum accuracy and small loss error in training and testing process of model development.","PeriodicalId":179466,"journal":{"name":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3INA.2018.8629522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Text classification of social media documents requires a specified model for a particular dataset. We investigated the public opinion and sentiment from Indonesian twitter toward the employment problem. To predict the sentiment about this topic, we collected a total of 75,126 tweets which correlate with employment conversation for the training and testing process. We analyzed the collected tweets by applying convolution neural networks (CNN) model which expanded from the standard one-dimensional deep learning model to a multichannel model. Applying multiple parallel CNN processes, the documents were processed using different CNN topologies by varying word embedding dimension, kernel size, number of hidden layers or nodes, and also different n-grams. Experiment results with three-dimension channel have 0.0172 loss error and 0.9917 accuracy. CNN model with multichannel configuration provides maximum accuracy and small loss error in training and testing process of model development.
基于多通道卷积神经网络的社交媒体数据集情感预测文本分类
社交媒体文档的文本分类需要特定数据集的指定模型。我们调查了印尼twitter上关于就业问题的公众意见和情绪。为了预测人们对这个话题的看法,我们收集了75,126条与就业对话相关的推文,用于培训和测试过程。将卷积神经网络(CNN)模型从标准的一维深度学习模型扩展到多通道模型,对收集到的推文进行分析。采用多个并行CNN处理,通过不同的词嵌入维数、核大小、隐藏层或节点数以及不同的n-gram,使用不同的CNN拓扑对文档进行处理。实验结果表明,三维通道的损耗误差为0.0172,精度为0.9917。多通道配置的CNN模型在模型开发的训练和测试过程中具有最大的准确性和较小的损耗误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信