Clustering Time Series over Electrical Networks

D. Vankov, I. Zorin, David Pozo
{"title":"Clustering Time Series over Electrical Networks","authors":"D. Vankov, I. Zorin, David Pozo","doi":"10.1109/SEST48500.2020.9203491","DOIUrl":null,"url":null,"abstract":"The growing number of renewable energy sources in electrical networks introduces new uncertainties in the electrical network nodes. Reducing the size of electrical networks helps to understand their structure better as well as to plan capacity updates more effectively. The ways of reducing representation of an electrical networks is not a trivial task. In this paper, we consider different methods of clustering of nodal time series data renewable power networks. We propose a clustering method for spatial and temporal data size reduction with local renewable energy as a main driver. The proposed methods are applied to an illustrative 9-bus, 118-bus case studies, and the RE-Europe dataset network.","PeriodicalId":302157,"journal":{"name":"2020 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST48500.2020.9203491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The growing number of renewable energy sources in electrical networks introduces new uncertainties in the electrical network nodes. Reducing the size of electrical networks helps to understand their structure better as well as to plan capacity updates more effectively. The ways of reducing representation of an electrical networks is not a trivial task. In this paper, we consider different methods of clustering of nodal time series data renewable power networks. We propose a clustering method for spatial and temporal data size reduction with local renewable energy as a main driver. The proposed methods are applied to an illustrative 9-bus, 118-bus case studies, and the RE-Europe dataset network.
电力网络上的聚类时间序列
电网中可再生能源的不断增加给电网节点带来了新的不确定性。减小电网的规模有助于更好地了解其结构,并更有效地规划容量更新。减少电网络表示的方法不是一项微不足道的任务。本文研究了可再生电网节点时间序列数据的不同聚类方法。本文提出了一种以局部可再生能源为主要驱动因素的时空数据缩减聚类方法。所提出的方法应用于一个说说性的9总线、118总线案例研究和RE-Europe数据集网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信