О свойствах одного класса четырехзначных паранормальных логик

Наталья Евгеньевна Томова
{"title":"О свойствах одного класса четырехзначных паранормальных логик","authors":"Наталья Евгеньевна Томова","doi":"10.21146/2074-1472-2018-24-1-75-89","DOIUrl":null,"url":null,"abstract":"Статья посвящена результатам, полученным в ходе исследования одного класса четырехзначных литеральных паранормальных логик, т. е. логик, которые одновременно являются паранепротиворечивыми и параполными на уровне пропозициональных переменных и их отрицаний. Паранепротиворечивые логики допускают возможность работы с противоречивой информацией, параполные логики позволяют строить рассуждения в условиях неполной информации. С обоими типами неопределенности, как с противоречивой, так и с неполной информацией, позволяют работать паранормальные системы. В [5] рассмотрен класс четырехзначных литеральных паралогик, полученных методом комбинирования изоморфов классической логики, выделенных в четырехзначной логике Бочвара $\\mathbf{B}_4$. В результате вместе с самими изоморфами логические матрицы, определяющие эти логики, образуют десятиэлементную верхнюю полурешетку относительно функционального вложения. В предложенной статье мы исследуем класс матриц, составляющий супремум упомянутой полурешетки. Как оказалось, матрицы этого класса обладают интересными функциональными свойствами, а именно соответствуют классу всех внешних четырехзначных функций. В статье также проводится алгоритм построения совершенной дизъюнктивной $\\mbox{$J$}$-нормальной формы четырехзначной внешней функции. В литературе имеются известные матрицы, которые функционально эквивалентны матрицам рассматриваемого класса. Например, одна из них это матрица, определяющая логику ${\\bf V}$ [17], представляющая собой формализацию интуиций воображаемой логики Н.А. Васильева. Нами рассмотрен вопрос о соотношении всех этих систем как по классам тавтологий, так и по классам правильных заключений, порождаемых рассматриваемыми матрицами. В результате доказано, что по классу тавтологий все системы эквивалентны, однако отличаются по свойствам отношения логического следования.DOI: 10.21146/2074-1472-2018-24-1-75-89","PeriodicalId":155189,"journal":{"name":"Logical Investigations","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Investigations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21146/2074-1472-2018-24-1-75-89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Статья посвящена результатам, полученным в ходе исследования одного класса четырехзначных литеральных паранормальных логик, т. е. логик, которые одновременно являются паранепротиворечивыми и параполными на уровне пропозициональных переменных и их отрицаний. Паранепротиворечивые логики допускают возможность работы с противоречивой информацией, параполные логики позволяют строить рассуждения в условиях неполной информации. С обоими типами неопределенности, как с противоречивой, так и с неполной информацией, позволяют работать паранормальные системы. В [5] рассмотрен класс четырехзначных литеральных паралогик, полученных методом комбинирования изоморфов классической логики, выделенных в четырехзначной логике Бочвара $\mathbf{B}_4$. В результате вместе с самими изоморфами логические матрицы, определяющие эти логики, образуют десятиэлементную верхнюю полурешетку относительно функционального вложения. В предложенной статье мы исследуем класс матриц, составляющий супремум упомянутой полурешетки. Как оказалось, матрицы этого класса обладают интересными функциональными свойствами, а именно соответствуют классу всех внешних четырехзначных функций. В статье также проводится алгоритм построения совершенной дизъюнктивной $\mbox{$J$}$-нормальной формы четырехзначной внешней функции. В литературе имеются известные матрицы, которые функционально эквивалентны матрицам рассматриваемого класса. Например, одна из них это матрица, определяющая логику ${\bf V}$ [17], представляющая собой формализацию интуиций воображаемой логики Н.А. Васильева. Нами рассмотрен вопрос о соотношении всех этих систем как по классам тавтологий, так и по классам правильных заключений, порождаемых рассматриваемыми матрицами. В результате доказано, что по классу тавтологий все системы эквивалентны, однако отличаются по свойствам отношения логического следования.DOI: 10.21146/2074-1472-2018-24-1-75-89
四位数超自然逻辑的一类性质
这篇文章是关于四位数文学超自然现象的研究得出的结果,即在正态变量和否定水平上是一般性和并列的。矛盾的逻辑允许与矛盾的信息合作,超逻辑允许在不完整的信息条件下进行推理。有了这两种不确定性,无论是矛盾的还是不完整的信息,超自然系统都能发挥作用。这是四位数文献的范畴,由四位数古典逻辑的同构组合而成,在四位数逻辑中突出。因此,与同构因子本身一起,决定这些逻辑的逻辑矩阵形成了一个相对于功能投资的十进制上半格。在拟议的文章中,我们将研究矩阵类,其中最重要的是半格。事实证明,这个类的矩阵具有有趣的功能特性,即所有外四位数函数的类。这篇文章还使用了一种算法,用来构建完美的分生美元/ mbox(4位外函数的正常形式)。在文献中,有已知的矩阵,在功能上相当于所讨论类的矩阵。例如,其中一个是决定逻辑的矩阵,它代表了纳斯·瓦西里耶夫想象中的逻辑直觉的形式化。我们已经讨论了所有这些系统在同义词典和正确结论类中所产生的比例。结果证明,在同义词源中,所有系统都是等价物,但在逻辑跟踪关系的性质上却有所不同。DOI: 10.21146/2074 1472 - 2018 - 24 - 1 - 75 - 89
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信